8th Rilem International Conference on Mechanisms of Cracking and Debonding in Pavements

June 7-9, 2016 - Nantes, FRANCE

Workshop 4, June 9

Recent progress in Digital Image Correlation: towards integrated identification?

Two civil and industrial applications of 2D DIC measurements combined with numerical simulations

<u>Roberto Fedele</u> and coworkers: M. Scaioni, G. Rosati. M. Ferraris, V. Casalegno

Department of Civil and Environmental Engineering (DICA) Politecnico di Milano, Milan, Italy

Items to be discussed

Delamination tests on FRP-reinforced masonry pillar, optical monitoring by 2D DIC and FE predictions

coworkers: M. Scaioni, G. Rosati

Shear tests on metal-ceramic assemblies, identification of cohesive parameters for innovative joints

coworkers: M. Ferraris, V. Casalegno

Delamination experiments and FE modelling of FRP-reinforced masonry

Roberto Fedele, M. Scaioni, G. Rosati

Ref: Fedele et alii, Cement & Concrete Composites, 45 (2014) 243–254.

Department of Civil and Environmental Engineering (DICA) Politecnico di Milano, Milan, Italy

CFRP-reinforced pillar: Historical bricks (XVII century) and high strength mortar

Optical monitoring by 2D DIC

image space

Benchmarking RMSE=15.9 μm (0.19 Pz)

displacement

3D heterogeneous finite element modelling

В

В

Elastic-damageable model (Comi-Perego 2001)

"bi-dissipative" model Vumat (Abaqus[©] explicit) two isotropic damage variables:

in tension D_t in compression D_c

state equations

3D FE modelling with perfect adhesion

Effective elastic modulus of the CFRP reinforcement estimated by DIC

Overall delamination response

DIC-corrected boundary conditions

FE model with "ideal" constraints

Characterization of innovative CFC/Cu joints by full-field measurements and finite elements

<u>Roberto Fedele</u>*, Valentina Casalegno[#], Monica Ferraris[#]

Ref: Fedele et alii, Materials Science & Engineering A, 595 (2014) 306–317.

*Dept. of Civil and Environmental Engineering (DICA) Politecnico di Milano, Milan, Italy

[#] Dept of Applied Science and Technology (DISAT)Politecnico di Torino, Turin, Italy

Composites for aggressive environments

ITER (International Thermonuclear Experimental Reactor)

brake discs

turbine engine blades

Single-lap shear tests on flat-tile joined samples

Macroscopic response

comparative assessment by different tests $\overline{\tau}_{max} = 34 \pm 4$ [MPa]

4-dofs motion for zoomed camera for optical monitoring

Joint collapse

Displacement fields measured by DIC and computed

Displacement fields measured by DIC and computed

tangential component k = 12[mm] Ucomp U_y^{exp} V -0.082 -0.075 -0.084 -0.075 -0.08 -0.086 -0.08 -0.085 -0.085 -0.088 -0.09 -0.09 -0.09 -0.095 -0.095 -0.092 -0.1 -0.1 -0.094 -0.105 > 3 -0.105> -0.096 3 2.5 2.5 -0.098 2 3 y 2 3 у 1.5 -0.1 2 x 1.5 2 x 1 1 1 1 [mm] [mm]

Displacement fields measured by DIC and computed

tangential component

Joint governing parameters to be identified

interface tractions

"displacement jumps"

Van der Bosch, Schreurs and Geers, EFM, 2006

parameters to identify $\mathbf{X} = \left\{ \phi_n, \delta_n, \delta_t \right\}^T$

 $\hat{\mathbf{X}} = \arg\min_{\mathbf{X}} \left\{ \omega_{u}(\mathbf{X}) = \sum_{k=1}^{n_{t}} \mathbf{R}_{k}^{T} \mathbf{R}_{k} \right\}$

minimization by Trust Region, reflective, interior point Method in a Matlab[®] environment

boundary conditions provided by DIC \leftarrow were deterministically prescribed without any regularization provision

Tangential stress evolution

Normal stress evolution

traction predicted under pure mode I

Closing remarks and future prospects

- DIC measurements especially suitable for calibration/validation of FE models with special reference to :

 (i) accuracy of 2D/3D geometry assumptions ;
 (ii) boundary data estimation ;
 (iii) response of joint/interfaces ;
 (iv) constitutive relationships .
- Information fusion from several sensors and diverse testing configurations
- Extension to High and Ultra High Temperature (UHT) testing (?)

$$J_2 \equiv \left(\frac{3}{2} S_{ij} S_{ji}\right) \quad [MPa^2]$$

second invariant stress deviator

$h_i(D_i)$ (i=t,c)

hardening/softening functions

meridian plane

Fracture energy regularization

Table

Model parameter	Meaning	Brick	Mortar
Ε	Young modulus	4250 MPa	5000 MPa
ν	Poisson ratio	0.1	0.1
a _t	parameter governing tensile damage activation function f_t	0.329	0.12
b_{t}	parameter governing tensile damage activation function f_t	3.78 MPa	2.4 MPa
k_{t}	parameter governing tensile damage activation function f_t	6.2 MPa ²	10.5 MPa ²
$(\sigma_{_{ m ct}}/\sigma_{_{ m Ot}})$	uniaxial stress at the elastic limit / uniaxial peak stress, in tension	0.8	0.8
D_{0t}	tensile damage at peak	0.1	0.1
a _c	parameter governing compressive damage activation function $f_{\rm e}$	0.0025	0.0025
b _c	parameter governing compressive damage activation function f_e	2.75 MPa	1.1 MPa
k _c	parameter governing compressive damage activation function f_e	36 MPa ²	28 MPa ²
$(\sigma_{\scriptscriptstyle m ec}/\sigma_{\scriptscriptstyle m Oc})$	uniaxial stress at the elastic limit / uniaxial peak stress, in compression.	0.7	0.7
D _{0c}	compressive damage at peak	0.3	0.3
G_{t}	fracture energy in tension	0.14 N/mm	0.09 N/mm
G _e	fracture energy in compression	14 N/mm	9 N/mm

Table 1: Damage model parameters adopted for the historical bricks and high-strength mortar joints.

Local predictions of FE model

Closing remarks

- Single-lap shear tests were performed under clip-control
- Delamination of CFRP strips from a small masonry pillar was simulated under the hypothesis of a perfect adhesion.
- 3D heterogeneous FE model with elastic-damageable phases was developed
- Optical monitoring was validated with correction of optical distorsion
- Information fusion
- Future prospects: combining interface and bulk damage

Local traction predicted by FEM

x [mm]

A priori assumed parameters ("diffuse load cell")

Ceramic phase CFC SEP NB31: Mechanical parameters at room temperature							
Elastic properties	Hill parameters for plastic anisotropy	Ramberg-Osgood parameters for the incompressible strains					
$E_x = 107 [\text{GPa}]; E_y = 15 [\text{GPa}]; E_z = 12 [\text{GPa}];$ $v_{xy} = 0.10; v_{xz} = 0.20; v_{yz} = 0.20;$ $G_{xy} = 10 [\text{GPa}]$	$\mathcal{F} = 0.8; \ G = 0.5;$ $\mathcal{H} = 0.5; \ \mathcal{N} = 10;$	$\sigma_0 = 100 \text{ [MPa]};$ $E_R / \alpha = 2083 \text{ [GPa]}; n = 7;$					

Cu phase: Mechanical parameters at room temperature						
Elastic properties	Ramberg-Osgood parameters					
E = 125 [GPa]; v = 0.34;	$\sigma_0 = 300 \text{ [MPa]};$ $\alpha = 0.06; n = 7;$					

Ref: ITER Final Report, Material Assessment Report, 2001

ITER Final Design Report (July 2001): Materials

Table 2.3-3Properties of SEP NB31 [11]

Properties	T, ⁰C	X	у		Z
Thermal conductivity, W/mK	RT	323	117		115
	800	154	58		55
	1000	145	56		52
	1500	136	55		51
Specific Heat, J/kg K	RT	780			
	800	1820			
	1000	2000			
CTE, 10 ⁻⁶ K ⁻¹	800	0.4	1		2.1
	1000	0.5	1.2		2.7
Tensile strength, MPa	RT	130	30		19
Tensile strain, %	RT	0.14	0.30		/
Young Modulus, GPa	RT	107	15		/
Poisson's ration	RT	xz: 0.2		yz: 0.2	
		xy: 0.1		yx: 0.1	
Compressive strength, MPa	RT	102	3	1	/
Shear strength, MPa	RT	xz: 15		yz: 9	
Electrical resistivity, μΩm	RT	3.7	12	.4	
Density, kg/m ³	RT	1900			
Porosity, %	RT	8			

Flat-tile mock-ups manufacturing

CFC NB31/Cu/CuCrZr

 High heat flux applied on CFC surface up to 10 MW/m² (3000 cycles) up to 20 MW/m² during transient events (20 cycles)
 Neutron irradiation and radiation damage

Problems when joining metals and CFC

 Large thermal expansion mismatch between Cu and CFC
 α_{CFC}=1,7-3,3 x 10⁻⁶ K⁻¹,
 α_{Cu}=16,6 x 10⁻⁶ K⁻¹ ×10⁻⁶
 → high residual stresses

 <u>Low wettability</u> of molten copper on CFC (contact angle= 140°)

sessile drop test at 1100 °C for 30 min under Argon

Joint manufacturing by one-step brazing

- Composite surface is modified by direct reaction with chromium → a carbide layer is formed: large reduction of the C/C-Cu contact angle.
- Commercial brazing alloy (Gemco[®]) is used to braze C/C to pure copper and pure copper to CuCrZr by the same heat treatment. Alloy does not contain any activating element (such as Ti and Si)

t. Alloy does not contain any g element Ti and Si) brazing alloy pure Cu brazing alloy C/C

Ferraris et alii, J. Nucl Mat. 2008

weight

2D-Digital Image Correlation

"passive" advection of the local texture (optical flow conservation)

 $\mathbf{u}_{i+1} = \mathbf{u}_i + \delta \mathbf{u}_{i+1}$ incremental form

Truncated expansion and stationarity

Euler-Lagrane $\delta \eta_2 = \langle \operatorname{grad} \eta_2, \delta \mathbf{v}_{i+1} \rangle = 0 \quad \forall \delta \mathbf{v}_i \in \mathbf{L}_2$ stationarity condition

$$a(\delta \mathbf{u}_{i+1}, \delta \mathbf{v}_{i+1}) = 2 \int_{\Omega} \delta \mathbf{v}_{i+1}^T \nabla g \cdot \nabla g^T \delta \mathbf{u}_{i+1} d\mathbf{x} \qquad \mathcal{K} = \nabla g \cdot \nabla g^T$$

bilinear form

$$F(\delta \mathbf{v}_{i+1}) = 2 \int_{\Omega} \delta \mathbf{v}_{i+1}^T \nabla g \left[g(\mathbf{x} + \mathbf{u}_i) - f(\mathbf{x}) \right] d\mathbf{x}$$

linear form

 $\mathbf{L}_{2}(\Omega) \equiv L_{2} \times L_{2} \times L_{2}$

find
$$\delta \mathbf{u}_i \in \mathbf{L}_2$$
: $a(\delta \mathbf{u}_i, \delta \mathbf{v}_i) = F(\delta \mathbf{v}_i) \quad \forall \delta \mathbf{v}_i \in \mathbf{L}_2$

semi-coercive variational problem

multiplicity of solution $\mathbf{u}_0 + \operatorname{Ker} \mathcal{K}$

Galerkin finite-element discretization

$$u=NU^{(e)}$$

pseudo-stiffness
 $\mathbf{K} \cdot \delta \mathbf{U}_{i+1} = \mathbf{B}$
pseudo-load

pseudo-stiffness

Tangential traction and 95% confidence strip

Normal traction and 95% confidence strip

Parameter sensitivity of displacement field

Estimate dependence on a priori information

variance assessment by σ -point strategy

Confidence ellipsoids and Bonferroni's domains

Engineering motivations

The behavior of masonry structures, strengthened with fiberreinforced polymer (FRP) thin sheets, is often dominated by delamination of the FRP reinforcement from the support.

A further complication is the presence of mortar joints, where cracks may propagate preferentially.

This fundamental issue is relatively under-investigated for masonry, especially from a numerical point of view.

Items to be discussed

- engineering motivations
- shear tests on joined CFC/Cu assemblies
- "optical" inverse problem: from pictures to displacements through 2D Digital Image Correlation
- "mechanical" inverse problem: from full field data to joint properties through Finite Element Model Updating
- closing remarks and future prospects

Energy Dispersive X-ray spectroscopy Cromium carbide (about 20 μ m thick) Cr₇C₃ and Cr₂₃C₆

Adherent nonlinear behavior under plane stress

anisotropic extension of multiaxial Ramberg-Osgood relationship

3 parameters

$$\mathbf{\varepsilon} = \mathbf{\varepsilon}_{el} + \mathbf{\varepsilon}_{pl} = C \,\mathbf{\sigma} + \frac{\alpha}{E_R} \begin{bmatrix} \sigma_{eq}^{n-1} \\ \sigma_0^{n-1} \end{bmatrix} \mathcal{M} \,\mathbf{s}$$
deviator is stress tensor
$$\mathbf{s} \equiv \mathbf{\sigma} - (\operatorname{tr} \mathbf{\sigma}/3) \,\mathbf{1}$$

$$\sigma_{eq} \equiv \left(\mathbf{s}^T \,\mathcal{M} \,\mathbf{s}\right)^{1/2} \operatorname{equivalent stress}$$

$$\sum \mathcal{M}([1:3], [1:3]) = 0$$

$$\sum \mathcal{M}([1:3], [1:3]) = 0$$

$$\int \mathcal{M} \equiv \begin{bmatrix} (\mathcal{G} + \mathcal{H} - \mathcal{H} - \mathcal{G} & 0 \\ -\mathcal{H} & \mathcal{H} + \mathcal{F} & -\mathcal{F} & 0 \\ -\mathcal{H} & \mathcal{H} + \mathcal{F} & -\mathcal{F} & 0 \\ -\mathcal{H} & \mathcal{H} + \mathcal{F} & -\mathcal{F} & 0 \\ -\mathcal{H} & \mathcal{H} - \mathcal{H} & \mathcal{H} + \mathcal{F} & -\mathcal{F} & 0 \\ -\mathcal{H} & \mathcal{H} - \mathcal{H} & \mathcal{H} + \mathcal{F} & -\mathcal{F} & 0 \\ -\mathcal{H} & \mathcal{H} - \mathcal{H} & \mathcal{H} + \mathcal{F} & -\mathcal{F} & 0 \\ -\mathcal{H} & \mathcal{H} - \mathcal{H} & \mathcal{H} + \mathcal{F} & -\mathcal{F} & 0 \\ -\mathcal{H} & \mathcal{H} - \mathcal{H} & \mathcal{H} + \mathcal{F} & -\mathcal{F} & 0 \\ -\mathcal{H} & \mathcal{H} - \mathcal{H} & \mathcal{H} + \mathcal{F} & -\mathcal{F} & 0 \\ -\mathcal{H} & \mathcal{H} - \mathcal{H} & \mathcal{H} + \mathcal{F} & -\mathcal{F} & 0 \\ -\mathcal{H} & \mathcal{H} - \mathcal{H} & \mathcal{H} + \mathcal{F} & -\mathcal{F} & 0 \\ -\mathcal{H} & \mathcal{H} - \mathcal{H} & \mathcal{H} + \mathcal{F} & -\mathcal{F} & 0 \\ -\mathcal{H} & \mathcal{H} - \mathcal{H} & \mathcal{H} + \mathcal{F} & -\mathcal{F} & 0 \\ -\mathcal{H} & \mathcal{H} - \mathcal{H} & \mathcal{H} + \mathcal{F} & -\mathcal{F} & 0 \\ -\mathcal{H} & \mathcal{H} - \mathcal{H} & \mathcal{H} + \mathcal{F} & -\mathcal{F} & 0 \\ -\mathcal{H} & \mathcal{H} - \mathcal{H} & \mathcal{H} + \mathcal{F} & -\mathcal{H} & 0 \\ -\mathcal{H} & \mathcal{H} - \mathcal{H} & \mathcal{H} - \mathcal{H} & \mathcal{H} + \mathcal{H} & -\mathcal{H} & 0 \\ -\mathcal{H} & \mathcal{H} - \mathcal{H} & \mathcal{H} - \mathcal{H} & \mathcal{H} + \mathcal{H} & -\mathcal{H} & 0 \\ -\mathcal{H} & \mathcal{H} - \mathcal{H} & \mathcal{H} - \mathcal{H} & \mathcal{H} + \mathcal{H} & -\mathcal{H} & 0 \\ -\mathcal{H} & \mathcal{H} - \mathcal{H} & \mathcal{H} - \mathcal{H} & \mathcal{H} + \mathcal{H} & -\mathcal{H} &$$

7 parameters

for isotropic Cu $\mathcal{F} = \mathcal{G} = \mathcal{H} = \frac{1}{2}; \ \mathcal{N} = \frac{3}{2}$

Műcke & Bernhardi

CMAME(2003)

First-order sensitivity analysis by Direct Differentiation Method

assembled tangent stiffness matrix, already available in a Newton scheme