8th Rilem International Conference on Mechanisms of Cracking and Debonding in Pavements (MCD2016)

Workshop: Recent progress in Digital Image Correlation: towards integrated identification?

Practical Experiences with DIC in Asphalt Technology

Moisés BUENO (Empa, Switzerland)

Swiss Federal Laboratories for Materials Science and Technology Road Engineering and Sealing Components Laboratory

Nantes, June, 9 - 2016

Outline

1. Digital Image Correlation System

Technical Data

2. Applications at Empa

Asphalt Mixtures Bridge Expansion Joints Waterproofing Bituminous Membranes

3. Crack Detection and Induction Healing

Induction Healing of Asphalt Roads

1:3 scale: Model Mobile Load Simulator (MMLS3)

- **4.** Conclusions
- **5.** Future Challenges

DIC – Technical Data

- ✓ 2 x 5.0 Mega Pixel CCD Cameras, monochrome
- ✓ Field of view (FOV): 2500 x 2000 Pixel
- ✓ 15Hz with full resolution, higher framerate possible with FOV reduction
- ✓ Minimum exposure time: 25ms
- Precision lenses with focal distance of 8mm and 35mm
- Timing Hub for synchronisation of the cameras
- Software ISTRA 4D
- Range of measurement: 10mm² to 10m²
- Displacement resolution approximately 0.01 pixel
- Measurement accuracy in the range of 1/100'000 of the FOV

Asphalt Mixtures

Cyclic Load Triaxial Test

Parameters 1 Hz // 3.0 MPa Axial Displacement (step480)

3Dim experimental investigation of linear viscoelastic properties of bituminous mixtures. Materials and Structures (DOI 10.1617/s11527-016-0827-3) RILEM TC 237-SIB, TG3 (Lily Poulikakos - Empa)

M. Bueno I MCD2016 I Nantes (France)

Bridge Expansion Joints

Bituminous Flexible Plug Expansion Joint

Nantes (France) M. Bueno MCD2016 I

5

0

Blisters formation on Concrete Bridge Decks with Waterproofing Asphalt Pavement Systems

Biaxial tension test

Von Mises stress distribution (FEM)

Empa Materials Science and Technology

Determination of blister propagation

Adhesive blister propagation under an orthotropic bituminous waterproofing membrane Construction and Building Materials,48 (2013),1171–1178; B.W. Hailesilassie and M.N. Partl

100

10 200

M. Bueno I MCD2016 I Nantes (France)

0

100

6/23

Induction Healing

- 1. Magnetic field generated by electrical current in the coil
- 2. Induction of electrical current by magnetic field (Faraday's law)
- 3. Heating of the conductive material (*Joule's principle*)
- 4. Heat transference from particles to bitumen
- 5. Viscosity decrease Flow behaviour
- 6. Crack Closure and Recovery of the Adhesion Bonds

Iron oxide nanoparticles for magnetically-triggered healing of bituminous materials Construction and Building Materials,112 (2016),497–505; E. Jeoffroy, D. Koulialias, S. Yoon, M.N. Partl, A.R. Studart

Induction Healing

Phase 1. Mixture Design

Phase 2. Healing Characterization

- ✓ Short Fibers (<2mm) with large Ø improve efficiency of induction
- ✓ Healing is only effective in AC above a certain temperature T_{newt}
- ✓ **Overheating** (heating time) can cause **structural damages**.
- ✓ After a certain number of cycles (fatigue behaviour), there is no mechanical recover by induction heating

Phase 3. Model System (Up-scaling)

Materials Science and Technology

Materials

Model Mobile Load Simulator (MMLS3)

Damage detection and artificial healing of asphalt concrete after trafficking with a load simulator Mech Time-Depend Mater (DOI 10.1007/s11043-016-9306-z) M. Bueno, M. Arraigada and M.N. Partl Empa Materials Science and Technology

Experimental Procedure

Model Mobile Load Simulator (MMLS3)

Test Temperature: 18°C ca. 7000 cycles/hour Tire Pressure: 600 kPa Load: 2.1 kN 5 Slabs (1800 mm x 435 mm x 40 mm)

1.4 cm

Experimental Procedure (3 phases):

- 1. Damage phase
- 2. Healing process
- 3. Validation phase (until failure)

Experimental Procedure

Model Mobile Load Simulator (MMLS3)

Healing process

Experimental Procedure

Model Mobile Load Simulator (MMLS3)

Experimental Procedure

Digital Image Correlation System Applications at Empa Crack Detection and Induction Healing Conclusions Future Challenges

Model Mobile Load Simulator (MMLS3)

Vertical Deformation Sensors LVDT: Linear Variable Differential Transformer

M. Bueno I MCD2016 I Nantes (France)

6

Experimental Results

Model Mobile Load Simulator (MMLS3)

- Slab 1: Preliminary test

30000 cycles Validation of the 3D DIC system

- Slab 2:

Damage phase: 15000 cycles

- Slab 3:

Damage phase: based on "continuous" 3D image analysis

- Slab 4:

Damage phase: based on "continuous" 3D image analysis

- Slab 5: Multiple healing analysis

20000 cycles (no damage) + 15000 cycles (damage) + 15000 cycles (damage) + 12000 cycles until failure (notch 3)

Experimental Results

Model Mobile Load Simulator (MMLS3)

Experimental Results

Model Mobile Load Simulator (MMLS3)

3D DIC: 3D Digital Image Correlation System

Experimental Results

Model Mobile Load Simulator (MMLS3)

- Slab 1: Preliminary test

30000 cycles

Validation of the 3D DIC

Experimental Results

Model Mobile Load Simulator (MMLS3)

- Slab 2:

Damage phase: 15000 cycles (first test with 3D System)

Experimental Results

Model Mobile Load Simulator (MMLS3)

- Slab 3:

Damage phase: based on "continuous" 3D image analysis

Experimental Results

Model Mobile Load Simulator (MMLS3)

- Slab 4:

Damage phase: based on "continuous" 3D image analysis

Experimental Results

Model Mobile Load Simulator (MMLS3)

- Slab 5: Multiple healing analysis

20000 cycles (no damage) + 15000 cycles (damage) + 15000 cycles (damage) + 12000 cycles until partial failure (notch 3)

Conclusions

- Development and validation of a new method for evaluating the healing of asphalt slabs (up-scaled) by induction heating.
- The enhancement of the life of the pavement due to the healing process has been confirmed in a larger scale.
- ✓ After healing, the initial performance is recovered (LVDT) and the damage is healed (3D DIC).
- ✓ The number of cycles until total failure is longer when the healing process is carried out before damage starts.
- The effect of multiple healing process as maintenance technique has been proven.

Future work

- Definition of the conditions the innovative procedure as maintenance technique (when and how to accomplish healing treatments).
- Description of the healable damage (crack size limitations, crack propagation velocity)
- ✓ To isolate the effect of natural healing (bitumen properties)
- ✓ New experimental setup (DIC): External trigger
- ✓ Assessment of the healing process with DIC.
- ✓ To focus the healing concept on a **specific application** (different experimental configurations):
 - Low temperature cracking,
 - Bridge joints,
 - Metallic grid or asphalt interlayer for reflective cracking,
 - Construction induced cracking (e.g. during compaction)
 -

8th Rilem International Conference on Mechanisms of Cracking and Debonding in Pavements (MCD2016)

Workshop: Recent progress in Digital Image Correlation: towards integrated identification?

Practical Experiences with DIC in Asphalt Technology

Moisés BUENO (Empa, Switzerland)

Swiss Federal Laboratories for Materials Science and Technology Road Engineering and Sealing Components Laboratory

Nantes, June, 9 - 2016