

8th Rilem International Conference on Mechanisms of Cracking and Debonding in Pavements June 7-9, 2016 – Nantes, FRANCE

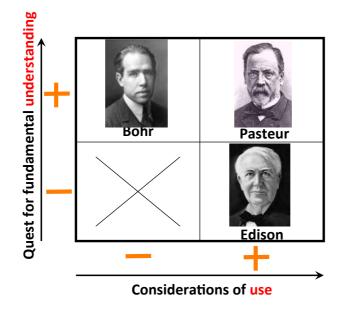
Workshop: New approaches to address pavement failure more realistically in asphaltic pavement design methods

... to promote a discussion about different approaches to address pavement failure, primarily cracking, in design methods.

Jorge Soares & Michael Wistuba

Pavement design: past, present, future, where is the crack? by Dr. Laurent Porot (The Netherlands)

German design and management approaches addressing asphalt pavement cracking, by Dr. Michael Wistuba (Germany)

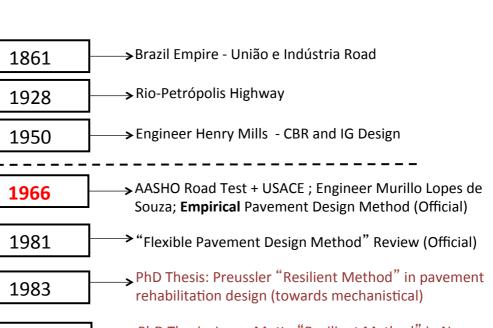

Fatigue cracking within the new mechanistic-empirical pavement design method in Brazil, by Dr. Jorge Soares (Brazil)

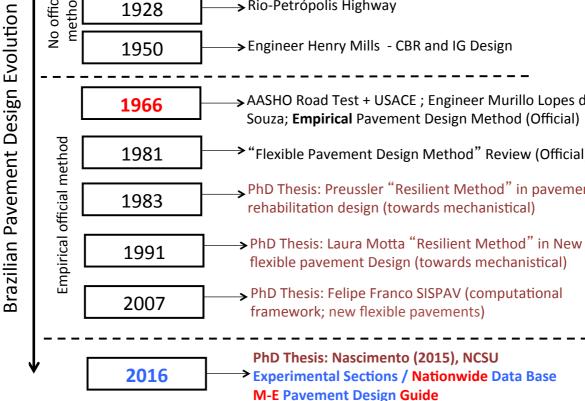
Recent Developments in Accelerated Pavement Testing (APT) as a Pavement Design Tool in Costa Rica, by Dr. Luis Loria-Salazar (Costa Rica)

June 8th, 2016

Pasteur's Quadrant

Good Science, Well Appplied


Fatigue cracking prediction within the new M-E pavement design guide in Brazil


Workshop: New approaches to address pavement failure more realistically in asphaltic pavement design methods

June 8th, 2016

No official method

Pavement Analysis Background in Brazil

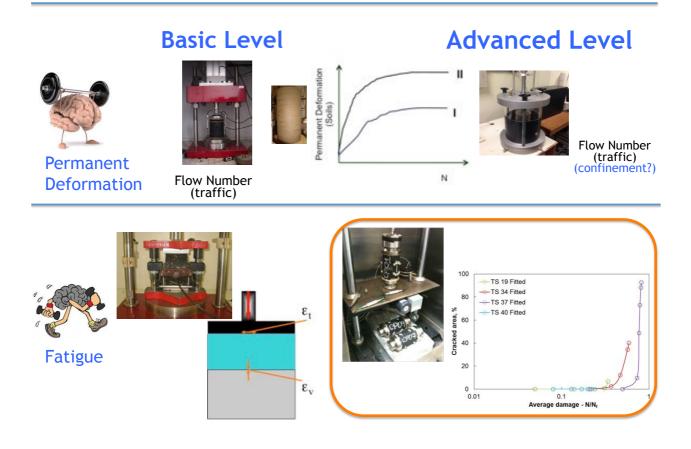
(ii) Database

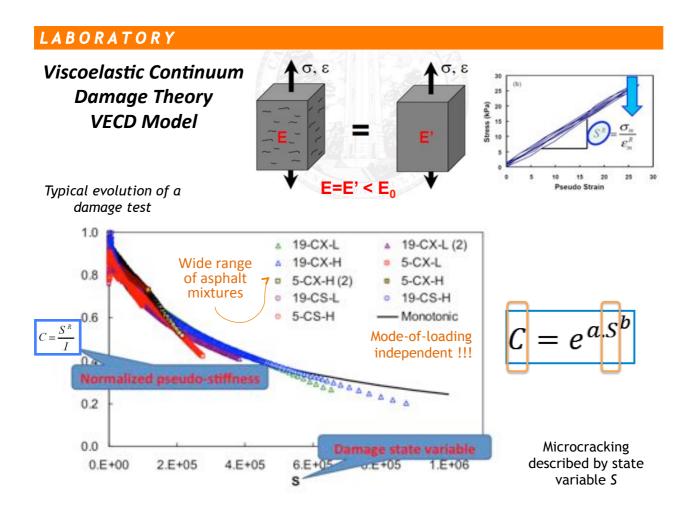
- Empirical approaches without thorough validation

(i) Funding - M-E pavement design guide under development by the **Asphalt Research Network** (Petrobras since 2005) → 16 universities + DNIT (Brazilian FHWA)

- VECD model for asphalt mixture oe model characterization and pavement damage analysis

OBJECTIVES:

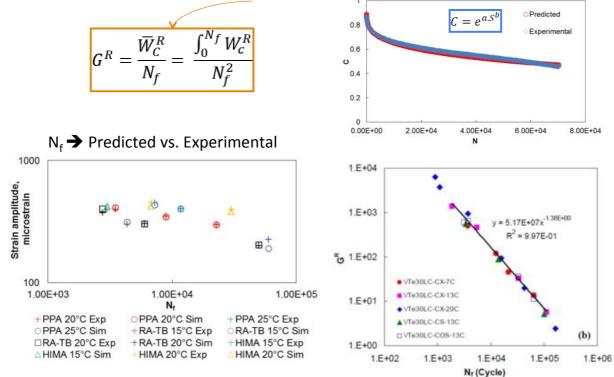

- To build and to evaluate the **field performance** of asphalt pavement sections throughout the country, subjected to real traffic loading


- To develop and/or to validate pavement materials performance models; To develop an analysis framework tool

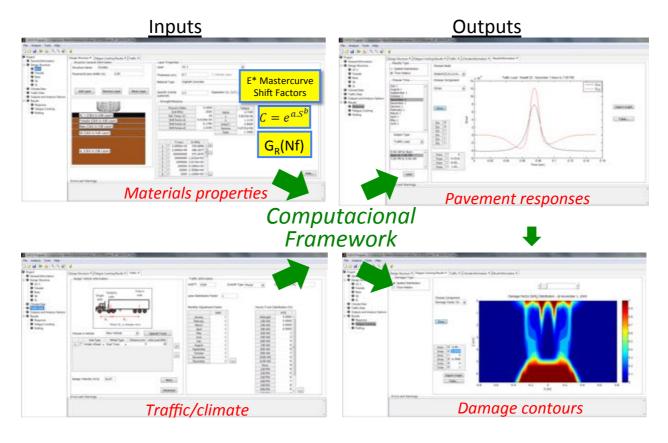
TS	Location	Traffic, number of ESALs (first year)	Cracked area at last survey, %	Construction technique	Designed asphalt thickness, mm	Asphalt mixture
UFSM 1	Santa Maria, RS	4.49E+05	32.9 Overlay, no milling		50	UFSM 50/70 2
UFSM 3	Santa Maria, RS 8.72E+0		0.0	New pavement	70	UFSM 50/70 1
UFRGS 2	Porto Alegre, RS	7.60E+06	0.0	New pavement	50	UFRGS 60/85
USP 4	Ribeirão Preto, SP	1.40E+05	0.0	New pavement	40	USP 50/70
USP 5	Ribeirão Preto, SP	1.40E+05	0.0	New pavement	40	USP 30/45
ND 1	Aparecida do Norte, SP	2.56E+06	9.0	Overlay, partial milling	140	ND 15/25
ND 2	Aparecida do Norte, SP	2.56E+06	3.0	Overlay, partial milling	200	ND 15/25
ND 3	Aparecida do Norte, SP	2.56E+06	4.8	Overlay, partial milling	140	ND 15/25
ND 4	Aparecida do Norte, SP	2.56E+06	12.5	Overlay, partial milling	200	ND 15/25
ND 5	Aparecida do Norte, SP	2.56E+06	19.0	Overlay, partial milling	200	ND HM 1
ND 6	Aparecida do Norte, SP	2.56E+06	5.9	Overlay, partial milling Overlay, partial milling	200 140	ND HM 1 ND HM 1
ND 7	Aparecida do Norte, SP	2.56E+06	10.0			
ND 8	Aparecida do Norte, SP	2.56E+06	0.0	Overlay, partial milling	140	ND HM 2
ND 9	Aparecida do Norte, SP	2.56E+06	0.0	Overlay, partial milling	200	ND HM 2
ND 10	Aparecida do Norte, SP	2.56E+06	0.0	Overlay, partial milling	140	ND HM 2
UFSC 2	Araranguá, SC	1.33E+07	20.0	New pavement	150	UFSC 50/70
UFSC 3	Araranguá, SC	1.33E+07	0.0	New pavement	114 (top) 56 (bottom)	UFSC 50/70 (top) UFSC RA (bottom)

Brazilian Database

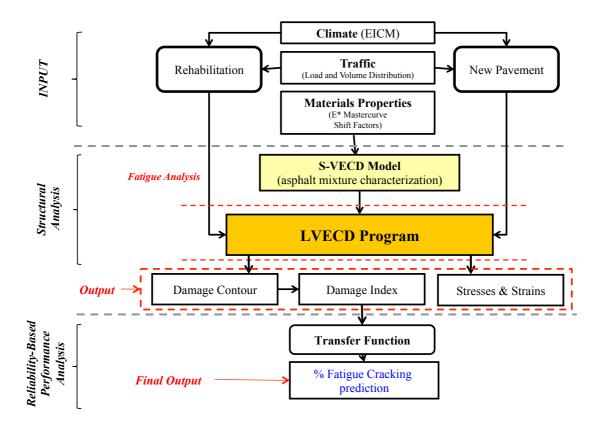
Pavement Analysis Background in Brazil



LABORATORY



S-VECD + *G*^{*R*} - based failure criterion


COMPUTATIONAL SIMULATION

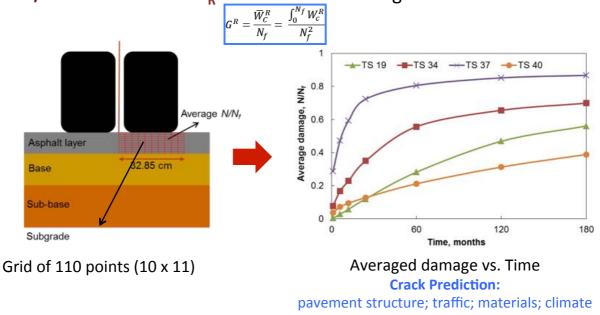
Layered ViscoElastic Pavement Analysis for Critical Distresses (1.1Beta program)

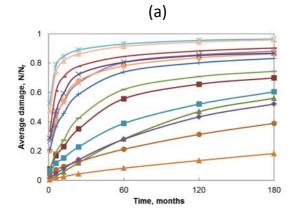
Analysis Framework

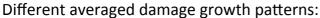
(Fatigue Cracking)

LVECD Validation and Calibration in Brazil

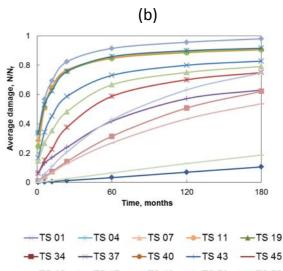
- 44 pavement sections → Rio de Janeiro, São Paulo, Santa Catarina, Rio Grande do Sul, and Ceará

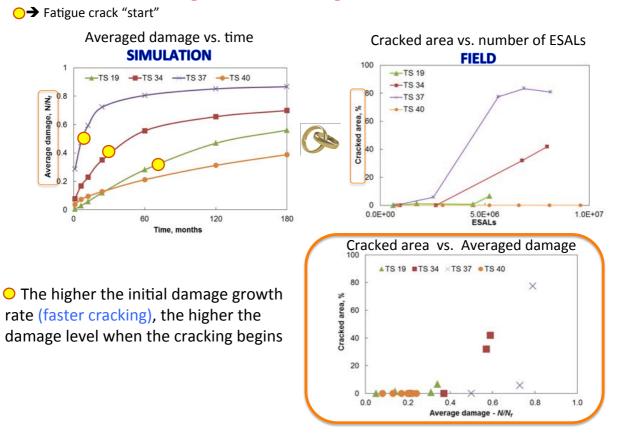

- Wide range of pavement structures and traffic levels
- Different damage levels → fatigue cracked areas
- Asphalt layers thicknesses: 40 mm to 200 mm
- Wide range of asphalt mixtures
- Materials and data availability


ΤS	ESALs (first year)	Cracked area, %	Overlay technique	Designed overlay thickness, mm	Asphalt mixture
19	7.28E+05	7.0	Full milling	50 60	30/45 19.1 mm (top) 65/90 19.1 mm (bottom)
34	1.11E+06	42	Partial milling	70	30/45 19.1 mm
37	1.18E+06	87	Partial milling	50	30/45 12.5 mm
40	1.39E+06	0	SAM / No milling	50	30/45 12.5 mm

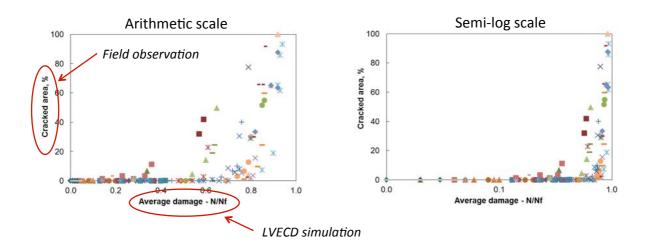

Damage Index Proposed

- N/N_f ratio values underneath the loaded area are averaged - N/Nf obtained from G_R failure criterion using Miner's law



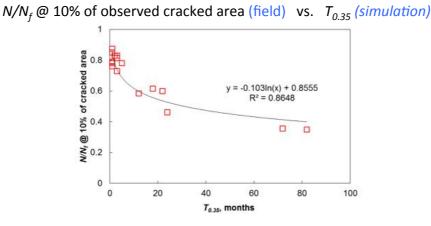


- Asphalt mixture properties and thicknesses
- Pavement structure
- Traffic level



—TS 46				TS 55
		TS 63	TS 65	—TS 67
	🛨 TS 73	TS 75	TS 86	—TS 88
TS 89	— TS 93			

Averaged Damage vs. Time

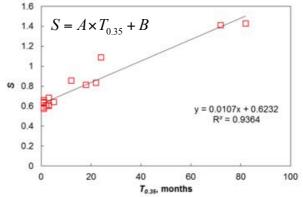

Averaged Damage vs. Cracked Area

Averaged damage vs. Cracked area: Can we collapse of all the curves at one single correlation?

Fatigue Cracking Starting Point Averaged Damage Growth Rate Dependency

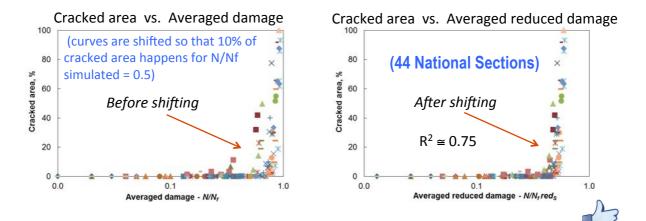
 $T_{0.35}$ \rightarrow simulated time for averaged damage (N/N_f) of 0.35

- $T_{0.35}$ is strongly correlated to the averaged damage when cracking starts - For $T_{0.35} > 80$ months (slow damage growing) $\rightarrow N/N_f @$ 10% tends to stabilize


Fatigue Cracking Starting Point Averaged Damage Shifting

- Multiplicative shift factor →

 $\frac{N}{N_f}$ red = $\frac{N}{N_f} \times S$

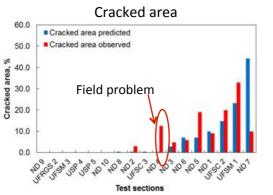

- Reference averaged damage for shifting \rightarrow 0.5 (all curves are shifted in such a way that their 10% of cracked area happens for N/Nf simulated = 0.5)

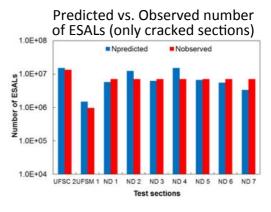
- The factors (*S*) for shifting the averaged reference condition were determined:

Defining the Damage-to-Cracked Area Transfer Function

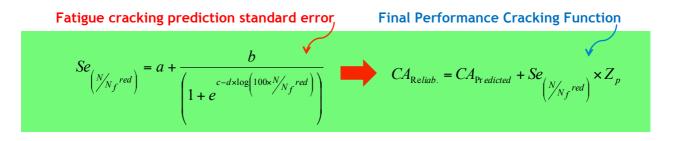
Based on $T_{0.35}$

- **Cracked area** and **Averaged reduced damage** presented a unique and strong relationship (considering field variability)

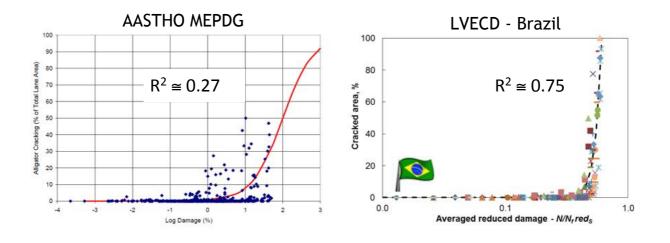

 $CA = C_1 \times \left(\frac{N}{N_f} red\right)^{C_2}$


Predicted vs. Observed cracked areas

ΤS Cracked area on last survey, % Predicted cracked area, % UFSM 1 32.9 23.2 UFSM 3 0.0 0.0 0.0 UFRGS 2 0.0 0.0 USP 4 0.0 USP 5 0.0 0.0 9.0 ND 1 10.0 ND 2 3.0 0.4 ND 3 4.8 2.9 12 5 ND 4 05 ND 5 19.0 7.1 Binder content = 4.7%ND 6 5.9 7.1 ND 7 10.0 44.3 Same mixture ND 8 0.0 0.4 Binder content = 5.2% 0.0 Rubber asphalt at the bottom layer 0.2 UFSC 2 20.0 14.8 UFSC 3 0.0 0.5


Prediction capability:

Predicted vs. Observed cracked areas

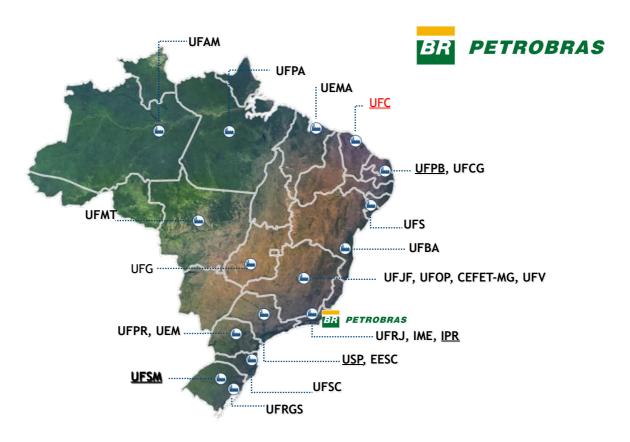


Large differences between the observed and predicted cracked areas are not necessarily associated with large differences regarding traffic level

LVECD in Brazil

- NCHRP Report 457: prediction capability with $R^2 > 0.65 \rightarrow$ very good

- The prediction error is about five times smaller than the error obtained through the AASHTO MEPDG


- **More national pavement sections** will be included in the calibration

- Introducing asphalt mixture **self-healing** properties in the analysis

- **Permanent deformation** prediction models validation for asphalt mixture and structural layers

- Analysis of Portland cement treated materials.

ACKNOWLEDGEMENTS

ISAP Workshop in 2009 (≈ 50 people) ISAP Workshop in 2012 (≈ 50 people) ISAP Symposium in 2012 (≈ 150 people) RMPD Workshop sponsored by ISAP in 2016 (≈ 50 people) ISAP Conference in 2018 ...

Join us in Fortaleza for the ISAP Conference in 2018 ...

