

June 7 - 9, 2016 - Nantes, FRANCE

Workshop: New approaches to address pavement failure more realistically in asphaltic pavement design methods

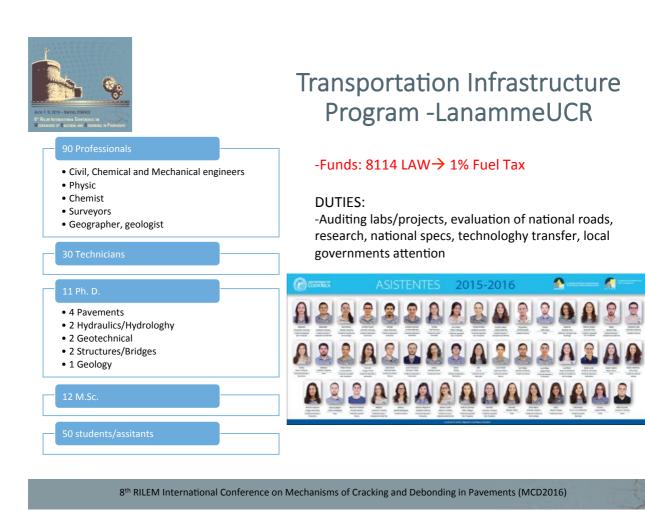
Recent Developments in Accelerated Pavement Testing (APT) as a Pavement Design Tool for *Cracking and Reflective Cracking* in Costa Rica

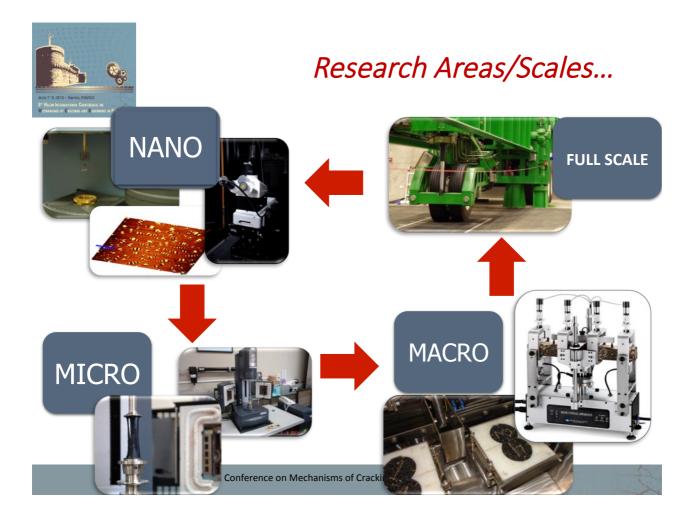
Ing. Luis Guillermo Loria-Salazar, Ph.D.

Paper N°: xxxxx

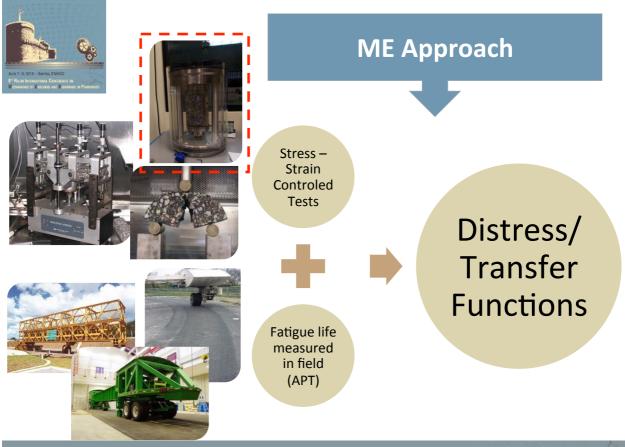
COSTA RICA

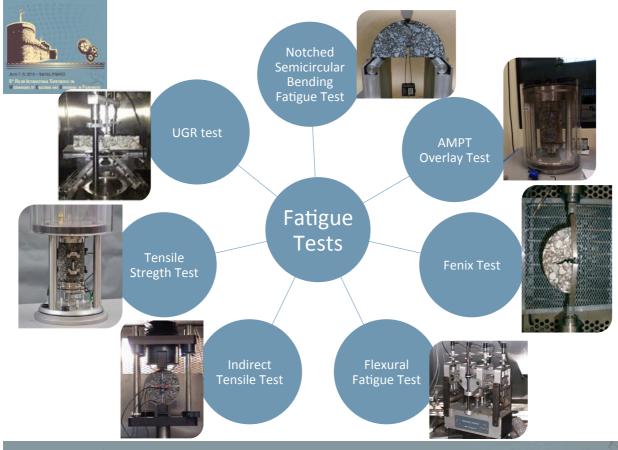
- Located in Central America.
- 52 000 km² (Brasil: 8 516 000 km²)
- 5,000,000 people (1 000 000 immigrants)
- No army since 1948.
- 2 million of tourists a year.
- A strong democracy since 1890
- A very happy country!!!





UNIVERSITY OF COSTA RICA

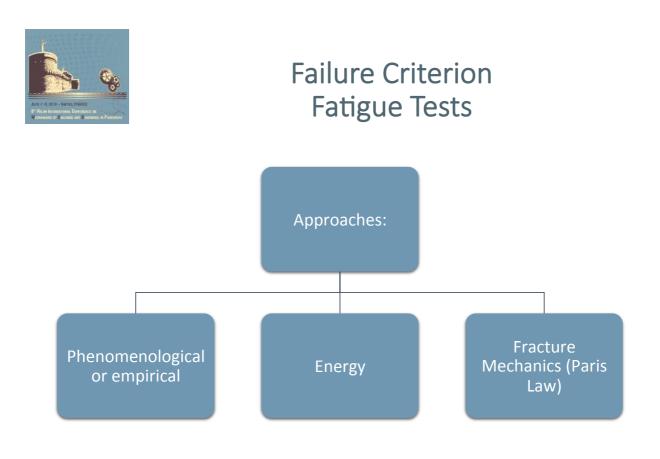



Fatigue/Reflecting cracking

Factors to study the asphalt mix behavior in laboratory:

- Loading type
- Temperature
- Resting times
- Material properties
- Ageing

8th RILEM International Conference on Mechanisms of Cracking and Debonding in Pavements (MCD2016)


8th RILEM International Conference on Mechanisms of Cracking and Debonding in Pavements (MCD2016)

¿Stress or Strain controled?

VARIABLES	CONTROLLED-STRESS (LOAD)	CONTROLLED-STRAIN (DEFLECTION)
Thickness of asphalt concrete layer	Comparatively thick asphalt bound layers	Thin asphalt-bound layer; < 3 inches
Definition of failure; number of cycles	Well-defined since specimen fractures	Arbitrary in the sense that the test is discontinued when the load level has been reduced to some proportion of its initial value; for example, to 50 percent of the initial level
catter in fatigue test data	Less scatter	More scatter
Required number of specimens	Smaller	Larger
Simulation of long-term influences	Long-term influences such as aging lead to increased stiffness and presumably increased fatigue life	Long-term influences leading to stiffness increase will lead to reduced fatigue life
Magnitude of fatigue life, N	Generally shorter life	Generally longer life
Effect of mixture variables	More sensitive	Less sensitive
Rate of energy dissipation	Faster	Slower
Rate of crack propagation	Faster than occurs in situ	More representative of in-situ conditions
Beneficial effects of rest periods	Greater beneficial effect	Lesser beneficial effect

(Tangella et al. 1990)

Phenomenological Approach

Laboratory costarican mixtures:

• Beam Flexural Tests 2004 to 2013 (617 raw data)

$$N_f = 1.91 \times 10^{-13} \left(\frac{1}{\varepsilon}\right)^{5.34}$$

$$N_f = 1.64 \times 10^{-12} \left(\frac{1}{\varepsilon}\right)^{5.34} \left(\frac{1}{S}\right)^{0.24}$$

where

 $N_f =$ number of cycles to failure

 $\varepsilon =$ tensile strain, mm/mm

S = initial mix stiffness, MPa

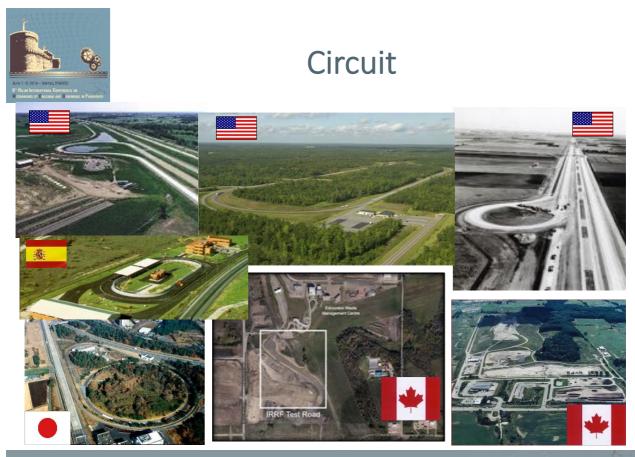
Based on laboratory results, they need to be calibrated with data field!!! (HVS)

(Vargas-Nordbeck et. al, 2013):

8th RILEM International Conference on Mechanisms of Cracking and Debonding in Pavements (MCD2016)

Acelerated Pavement Tests

- Response sources for many years
- It can be grouped in four categories
 - Circular
 - Circuit
 - Linear fixed
 - Linear movable


Profilometer AASHO Road Test, Illinois. 1958-1960

Circular

8th RILEM International Conference on Mechanisms of Cracking and Debonding in Pavements (MCD2016)

Linear Fixed

8th RILEM International Conference on Mechanisms of Cracking and Debonding in Pavements (MCD2016)

12

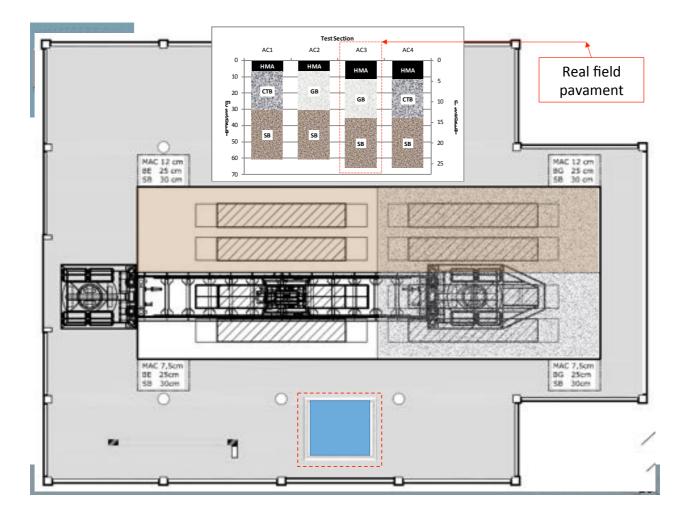
13

8th RILEM International Conference on Mechanisms of Cracking and Debonding in Pavements (MCD2016)

PaveLab – LanammeUCR

• Since 2013 in Costa Rica

8th RILEM International Conference on Mechanisms of Cracking and Debonding in Pavements (MCD2016)


Tests specifications

- 20,000 loads in two directions per day
- Load speed: 10 km/hr
- Loads applied: 40, 60, 70, 80 kN
- Type of tire: Dual 11R22-5
- Wandering: 100 mm
- Dry conditions
- **23/7**

8th RILEM International Conference on Mechanisms of Cracking and Debonding in Pavements (MCD2016)

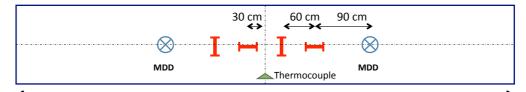
Phase I Experiment

Sifón-La Abundancia Project

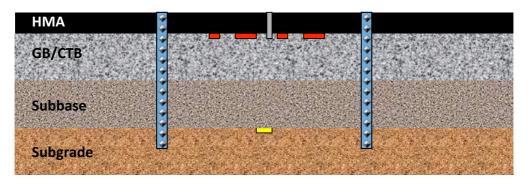
SIFÓN-LA ABUNDANCIA

Instrumentation

- Soil Pressure Transducers
- Multi-Depth Deflectometer (MDD)
- Road Surface Deflectometer (RSD)
- Thermocouples
- Asphalt strain gauges
- Moisture sensors
- Cracking Activity Meter

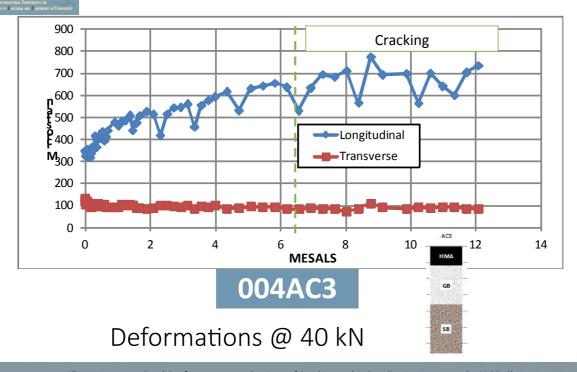


8th RILEM International Conference on Mechanisms of Cracking and Debonding in Pavements (MCD2016)


21/Nbr

Instrumentation

Section Length = 6.0 m


59 millons ESALs applied

Test section	Repetitions	ESALS	
001 AC1	1 000 000	10 708 004	
002 AC4	1 500 000	21 550 195	PITRA
003 AC2	1 000 000	9 350 541	PAVE LAB Laboratorio de Pavimentos
004 AC3	1 600 000	17 682 625	

8th RILEM International Conference on Mechanisms of Cracking and Debonding in Pavements (MCD2016)

18

Transducers for deformation 004AC3

8th RILEM International Conference on Mechanisms of Cracking and Debonding in Pavements (MCD2016)

Fatigue cracking

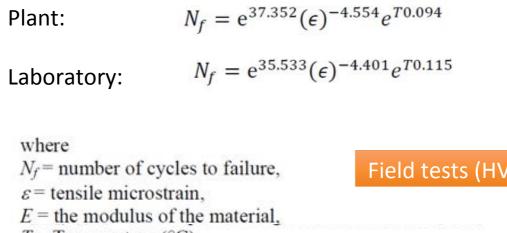
8th RILEM International Conference on Mechanisms of Cracking and Debonding in Pavements (MCD2016)

Phenomenological or empirical analysis

$$N = k_1 \varepsilon^{-k_2} \qquad N = k_1 \sigma^{-k_2}$$

Where:

N: Number of load cycles to fatigue failure $\epsilon \circ \sigma$: Applied tensile strain or stress (mm/mm) k_i : Laboratory determined material constants


Disadvantages:

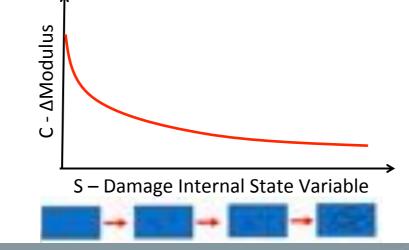
- There is not a unique relationship
- High variability
- Fatigue limit

Phenomenological Approach

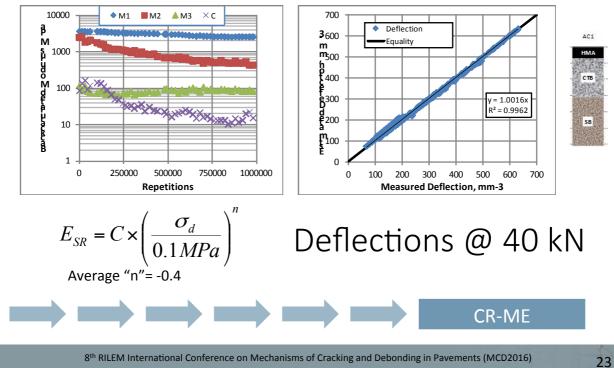
Beam Flexural Test on the mixture

T = Temperature (°C).

Field tests (HVS)


(Leiva-Villacorta et. al, 201!

8th RILEM International Conference on Mechanisms of Cracking and Debonding in Pavements (MCD2016) 21


Continuum damage

 Continuum damage mechanics considers a damaged body with some stiffness as an undamaged body with a reduced stiffness, and the relationship between damage and effective stiffness must be characterized

MDD Backcalculation of modulus 001AC1

Phenomenological Approach + Continuum Damage

Beam Flexural Test on the mixture:

• Damage model

$$\omega = 0.09295 \times (MN)^{0.31003} \times \left(\frac{\varepsilon}{200}\right)^{1.59529} \times \left(\frac{E}{3000}\right)^{0.79765} \times e^{(0.04121 \times T)}$$

Laboratory:

$$\omega = 0.18941 \times (MN)^{0.2707} \times \left(\frac{\varepsilon}{200}\right)^{1.0696} \times \left(\frac{E}{3000}\right)^{0.53480} \times e^{(0.03517 \times T)}$$

Plant:

w = damage,

- MN = the number of load repetitions in millions,
- $\varepsilon =$ tensile microstrain,
- E = the modulus of the material, MPa, and;
- $T = Temperature \circ C$

Field tests (HVS)

(Leiva-Villacorta et. al, 20:

Phenomenological Approach + Continuum Damage

Field tests (HVS):

Damage model (damage level = 50%)

$$MN = 18.39 \times \left(\frac{\varepsilon}{200}\right)^{-3.951} \times \left(\frac{E}{3000}\right)^{-1.976} \times e^{(-0.129 \times T)}$$

where

MN = the number of load repetitions in millions, $\varepsilon =$ tensile microstrain.

Field tests (HVS)

- E = the modulus of the material, MPa, and;
- T = Temperature, °C.

(Leiva-Villacorta et. al, 201!

Fatigue damage models developed using plant and lab produced mix tended to underestimate the observed APT damage by an average of 59% and 28% respectively

8th RILEM International Conference on Mechanisms of Cracking and Debonding in Pavements (MCD2016)

Energy Approach

 Dissipated energy is defined as the damping of energy or the energy loss per load cycle in any repeated or dynamic test (Van Dijk, 1975; Van Dijk and Visser, 1977; SHRP, 1995).

Energy Approach

Dissipated energy per cycle = $\pi * \sigma_i * \varepsilon_i * sen \varphi_i$

Where:

- ϵ_i : Strain amplitude at load cycle i
- σ_i : Mix stiffness at load cycle i
- ϕ_i : Phase shift between stress and strain at load cycle

8th RILEM International Conference on Mechanisms of Cracking and Debonding in Pavements (MCD2016)

And F-4 2015 - Remun Filling Pringer and Annual Pringer Pringer Pringer Annual Pringer Pring

Energy Approach

$$RDEC_{a} = \frac{DE_{a} - DE_{b}}{DE_{a} * (b - a)}$$

$$Plateau Value = \left[1 - (1 + 100/N_{f50})^{f}\right]/100$$

Where:

- RDEC_a: ratio of dissipated energy change
- $DE_a y DE_b$: dissipated energy of a and b repeated load
- N_{f50}: fatigue life at 50% stiffness reduction point

Energy Approach

Laboratory costarican mixtures:

• Beam Flexural Tests from 2004 to 2013 (617 raw data)

 $PV = 0.324 N_f^{-1.04}$

 $PV = 10^{9.505} \varepsilon^{6.0612} S^{1.5091} V P^{1.4684}$

where

 $\varepsilon =$ tensile strain, in/in

S = flexural stiffness of the mixture (20°C, 10Hz), MPa

VP = volumetric parameter, $VP = \frac{AV}{AV + V_h}$

AV = mixture air voids, %

 $V_b =$ mixture asphalt content by volume, %, $V_b = 100 \times \frac{G_{mb} \times P_b}{G_b}$

G_{mb} = mixture bulk specific gravity

 P_b = percent of asphalt binder by total weight of mix, %

 G_b = asphalt binder specific gravity (generally assumed 1.03)

GP = aggregate gradation parameter, $GP = \frac{P_{NMAS} - P_{PCS}}{P_{200}}$

(Vargas-Nordbeck et. al, 2013)

 P_{NMAS} = percent of aggregate passing the nominal maximum size sieve, % P_{PCS} = percent of aggregate passing the primary control size sieve, % P_{200} = percent of aggregate passing the No. 200 sieve, %

8th RILEM International Conference on Mechanisms of Cracking and Debonding in Pavements (MCD2016)

29

Energy Approach

Laboratory costarican mixtures:

• Additional models:

TABLE 2 Models Developed for PV Prediction

Eq.	Variables	Fitted model
8	ε, E*, VP, GP	$PV = 5.6 \times 10^{-4} \varepsilon^{5.8268} E^{4.7652} V P^{0.7341} G P^{-1.1644}$
9	ε, Ε*, φ	$PV = 10^{7.426} \varepsilon^{5.5806} E^{2.3163} \phi^{-2.7170}$
10	ε, M _R , VP, GP	$PV = 10^{8.415} \varepsilon^{5.6690} M_R^{1.2663}$
11	ε, S _t	$PV = 10^{8.365} \varepsilon^{5.8175} S_t^{1.7278}$

(Vargas-Nordbeck et. al, 201

• Pavement design:

• Improved fatigue models:

Based on laboratory results, they need to be calibrated with data from APT!!! **(HVS)**

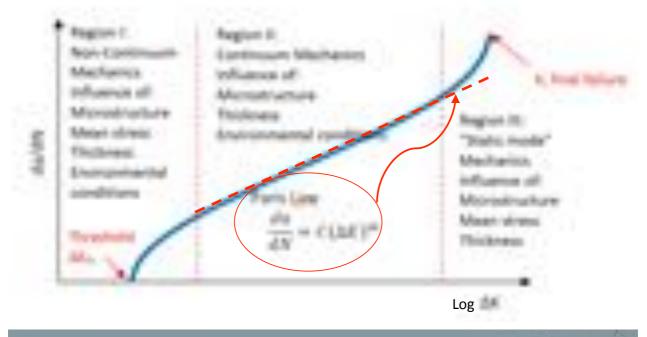
TABLE 3 Fat	igue Models	for Paveme	nt Design
--------------------	-------------	------------	-----------

Eq.	Fatigue Model	Predictor Variables
13	$N_f = 441.78 \varepsilon^{-5.5838} E^{-4.5664} V P^{-0.7035} G P^{1.1158}$	Tensile strain, dynamic modulus, volumetric parameter, gradation parameter
14	$N_f = 2.60 \times 10^{-8} \varepsilon^{-5.3478} E^{-2.2197} \phi^{2.6036}$	Tensile strain, dynamic modulus, phase angle
15	$N_f = 2.94 \times 10^{-9} \varepsilon^{-5.4325} M_R^{-1.2134}$	Tensile strain, resilient modulus
16	$N_f = 3.28 \times 10^{-9} \varepsilon^{-5.5749} S_t^{-1.6557}$	Tensile strain, tensile strength

(Vargas-Nordbeck et. al, 201

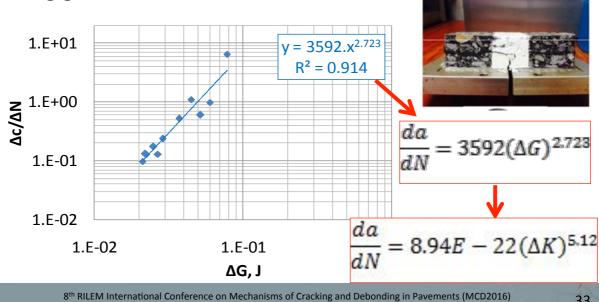
8th RILEM International Conference on Mechanisms of Cracking and Debonding in Pavements (MCD2016)

31

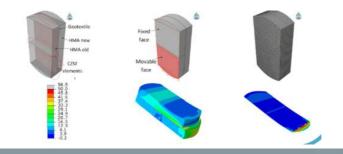


Fracture Mechanics Approach Reflective Cracking

Fracture Mechanics Approach



8th RILEM International Conference on Mechanisms of Cracking and Debonding in Pavements (MCD2016)

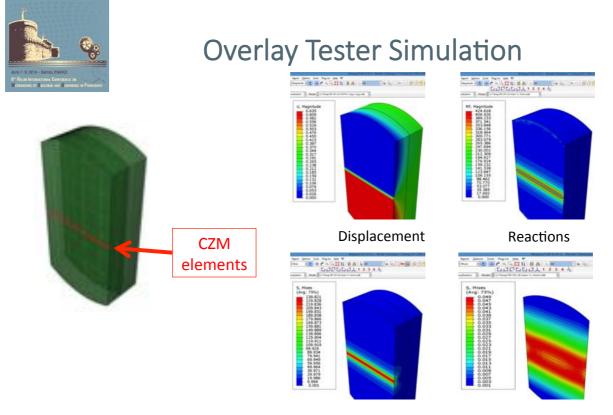

Fracture Mechanics Approach

Cores extracted from a overlay rehabilitated pavement using geotextiles:

- Introduced by Dugdale and Barenblatt
- Suppose stress-displacement behavior in damage zone as a property of the material
- Used for studying the fracture in various materials, such as metals, polymers, ceramics, and geomaterials.

8th RILEM International Conference on Mechanisms of Cracking and Debonding in Pavements (MCD2016)


(a) Crack growth


(b) Zone idealized as zone of strain softening

(c) Zone idealized by closure tractions
(Anderson, 2005)

Bilinear traction-separation law

Von Mises

Conclusions

• Fatigue and reflective cracking are

- Complex phenomena
- Required multi-scale analysis to understand tand to model them
 - Lab testing
 - APT testing
 - Field evaluation
- Modeling

8th RILEM International Conference on Mechanisms of Cracking and Debonding in Pavements (MCD2016) 45/Nbr

Conclusions

- Fatigue models developed for lab and calibrated for APT conditions
 - Phenomenological approach
 - Phenomenological approach + Continuum damage
 - Energy Approach

• Reflective cracking models under development

- Overlay tester
- Bilinear traction-separation law
- OT FEM simulation
- APT test on queue

Comming soon...

- •76 papers
- International and national participants
- •13 themes

http://www.apt-conference.com/index_esp.html

8th RILEM International Conference on Mechanisms of Cracking and Debonding in Pavements (MCD2016)

¡Muchas gracias!

http://www.lanamme.ucr.ac.cr/ luis.loriasalazar@ucr.ac.cr

