June 7 - 9, 2016 - Nantes, FRANCE

Workshop: New approaches to address pavement failure more realistically in asphaltic pavement design methods

Pavement design: Past, present, future, where is the crack?

Laurent Porot

- About pavement engineering
- Pavement design approaches
- Conclusions

DC to Richmond Road in 1919 - from the Asphalt Institute

Pavement engineering

8th RILEM International Conference on Mechanisms of Cracking and Debonding in Pavements (MCD2016)

 The aim of pavement is to ensure a safe reliable journey for goods and people whatever the conditions

8th RILEM International Conference on Mechanisms of Cracking and Debonding in Pavements (MCD2016) 5/99

8th RILEM International Conference on Mechanisms of Cracking and Debonding in Pavements (MCD2016)

8th RILEM International Conference on Mechanisms of Cracking and Debonding in Pavements (MCD2016)

Where are the cracks?

• Empirical approach

- TRL 1132 from 1982 & TRL 850 from 1997
- DMRB Volume 7 Section 2
- Standard axle load 8t
- Based on
 - Concept of long life pavement for « indeterminate life »
 - Failure from top cracking not from fatigue
- Material properties
 - Modulus @ 20°C, 5Hz
- Using specific chart

8th RILEM International Conference on Mechanisms of Cracking and Debonding in Pavements (MCD2016)

MEPDG philosophy To replace AASHTO 1993 focus more on performances Progressive approach with accuracy of data Where are Level 1 Dynamic modulus master curve, the cracks? Site specific traffic spectrum, Level 2 Field deflexion Close to AASHTO 1993, User-selected values from database, Modulus assessed through binder Level 3 By default design, User-selected values

9/99

Shell Pavement Design Method

Long history

- From 1963 with design charts
- 1973 with BISAR and 1978 with SPDM
- Based on Burmister model
 - Material model (BANDS)
 - Structure model (BISAR)
 - Climate conditions and traffic spectrum (SPDM)
 - Thickness, rutting, overlay design (SPDM)
- Key features
 - Healing factor, layer bonding
 - No reliability factor

8th RILEM International Conference on Mechanisms of Cracking and Debonding in Pavements (MCD2016)

Where are the cracks?

French Pavement Design

- Heavy standard axle load
 - 13t/ axle
- Severe winter in 60s
 - Important pavement degradations
- LCPC and the technical network
 - Research and development from both private and public
 - Full scale pavement facilities in Nantes
- Toll highway framework
 - Driven by whole life cycle cost optimisation

Early development of holistic pavement design approach

8th RILEM International Conference on Mechanisms of Cracking and Debonding in Pavements (MCD2016) 13/99

French method

- Empirical analytical approach based on analysis of strain and stress in a multilayer model and fatigue law with field calibration
- Material characteristics assess via laboratory test
 - Modulus @ 15°C 10Hz,
 - Fatigue @ 10°C 25Hz
- Heavy standard axle load 13t
- User defined method with correlation factors $\epsilon_{allow} = (NE/10^6)^b x(E_{\theta 1}/E_{\theta 2})^{1/2} x \ 10^{-b\delta t} x \ k4 x \ k5 x \ \epsilon_{6 \ \theta 1}$
- Use of Alize-LCPC software*
 - User friendly fully customised (climate, road/airport)
 - Design and overlay design

* http://www.itech-soft.com/alize/index.php?lang=en

8th RILEM International Conference on Mechanisms of Cracking and Debonding in Pavements (MCD2016)

French context

• $\sigma_{hadm} = \sigma_6 (N/10^6)^{-1/b}$

-1/b around 12-13

Mostly fatigue criteria

8th RILEM International Conference on Mechanisms of Cracking and Debonding in Pavements (MCD2016)

15/99

Various loading configuration

• Standard road axle loading

- Axle load 8.16 t (18klb)
- Single twin wheel axle
- B777 aircraft gear
 - Total weight 240-300t, 13 bars
 - 6 wheels gear

8th RILEM International Conference on Mechanisms of Cracking and Debonding in Pavements (MCD2016)

Russian Pavement Design

8th RILEM International Conference on Mechanisms of Cracking and Debonding in Pavements (MCD2016)

Russian context

- One of the world largest country
 - Various climate zones from cold to sub tropical
 - Wide road network
- Long historical scientific background
 - MADI (Московский автомобильно дорожный государственный) research facilities
 - Over last decades many innovations introduced
 - Partnerships with LCPC back in 70s

19/

- Analytical approach in ODN 218.046.01 (государственная служба дорожного хозяйства министерства транспорта российской федерации)
 - Mechanical design and
 - Freeze/thaw resistance
- Material characteristics assess via laboratory test
 - Specific job mix formula, strength at 0°C, 20°C, 60°C
 - Assumption for other characteristics
- Different climate zones
- Traffic with
 - different standard axle load up to 115 kN
 - Number of days per year depending on climate zone
- Use of nomographs or software

8th RILEM International Conference on Mechanisms of Cracking and Debonding in Pavements (MCD2016) 21/99

Design process

- Road category and traffic class
 - 5 road categories with reliability from 0.7 to 0.98
 - Standard axle load depends on road category and project
 - Total traffic for 70 to 205 days depending climate zones

Mechanical calculation

- Total pavement strength, allowed total deflexion layer by layer
- Maximal strength on subgrade layer (at 20°C)
- Fatigue resistance of bound materials (stress)
- Freeze / thaw calculation
 - Total freeze depth depending on climate zone

Design criteria

- Total equivalent traffic loading $\sum N_p = 0.7N_p \frac{K_c}{q^{(T_{cr}-1)}} T_{p\delta c^{\kappa_n}}$
- Total pavement strength
 - Use of nomograph K=E_i/E_{i-1}
 - Asphalt concrete 2000 to 3200 MPa
- Maximal strength on the subgrade
 - 2-layer model with $E_{\varepsilon} = \left(\sum_{i=1}^{n} E_{i}h_{i}\right) \cdot \left(\sum_{i=1}^{n} h_{i}\right)$
 - Use of nomograph
- Fatigue resistance $\sigma_r < \frac{R_N}{K_{np}^{mp}}$
 - Use of total pavement strength
- Freeze resistance
 - Freeze depth, use of deep sand layer

23/99

8th RILEM International Conference on Mechanisms of Cracking and Debonding in Pavements (MCD2016)

And a loss of the second

Conclusion

Cut & Fold Erik Johannson http://ww

- Trend towards more analytical pavement design vs. empirical
- Common features using Burmister multi-layer model
 - Elastic linear model and fatigue law
- Where are the cracks?
 - Fatigue resistance addressed in pavement design
 - Debonding can be assessed
 - Thermal cracking (low temperature) addressed with asphalt mix design
- More model in Pavement Management System
 - HDM4, ...

8 th RILEM Inte	rnational Conference on Mechanisms of Cracking and Debonding in Pavements (MCD2016)	25/99
ET-F ARTER FANCE REAL PARTE F	<text></text>	