June 7 - 9, 2016 - Nantes, FRANCE

Smart Sensing Technology for Infrastructure Monitoring

Supported by FHWA and USDOT

Nizar Lajnef and Karim Chatti Michigan State University

Two Technologies

Long-term Tagging Technology

Events Detection and Condition Monitoring Technology

Challenges:

- Size
- Attachment to the host structure
- Location
- Meaning of data
- Data interpretation and prognosis methods

Pavement Monitoring System

At Turner-Fairbanks Highway Research Facility.

8th RILEM International Conference on Mechanisms of Cracking and Debonding in Pavements (MCD2016)

Manufacturing

8th RILEM International Conference on Mechanisms of Cracking and Debonding in Pavements (MCD2016)

Data Interpretation - Damage

Data Interpretation - Damage

8th RILEM International Conference on Mechanisms of Cracking and Debonding in Pavements (MCD2016)

Data Interpretation - Damage

Normalized Time Example - Variation over time of the mean damage index (from sensor) versus the damage index evaluated using data from a COD gage.

Example - Variation over time of the standard deviation of the damage index distribution.

Actual remaining life	Predicted remaining life using the
	sensor
391	325
420	425
9350	7125
7022	11048
10980	23011

Asphalt concrete sample: Length: 18" (457.2 mm) Span length: 15" (381 mm) Thickness: 6.5" (165.1 mm) Width: 6" (152.4 mm) - Damage states: Intact: a= 0 mm Damage 1: a = 7/8" (22.2 mm) Damage 2: a = 1 1/4" (31.75 mm) Damage 3 (crack propagation): a = 1 3/4" (44.45 mm)

Single Edge Notched Beam Test

The crack propagation phase during the test

8th RILEM International Conference on Mechanisms of Cracking and Debonding in Pavements (MCD2016)

8th RILEM International Conference on Mechanisms of Cracking and Debonding in Pavements (MCD2016)

Smart Sensing Technology for Infrastructure Monitoring

8th RILEM International Conference on Mechanisms of Cracking and Debonding in Pavements (MCD2016)

Sensing Issues in Civil Structural Health Monitoring

- Cost
- Size
- Power Source
- Maintenance Maintenance free sensors
- Data meaning and interpretation
- Ease of installation and use
- Data type and format Integration with existing management systems
- Extreme events monitoring

Two Technologies

Long-term Tagging Technology

Events Detection and Condition Monitoring Technology

8th RILEM International Conference on Mechanisms of Cracking and Debonding in Pavements (MCD2016)

8th RILEM International Conference on Mechanisms of Cracking and Debonding in Pavements (MCD2016)

8th RILEM International Conference on Mechanisms of Cracking and Debonding in Pavements (MCD2016)

Pavement Tagging Technology

PCC Mixture Design Inputs Cement Content (lbs) Type of cement Supplementary Cementitious Materials (lbs) Type of SCM Coarse Aggregate (lbs) Aggregate Geology Coefficient of thermal expansion Fine Aggregate (lbs) Aggregate Geology Water (lbs) Admixture(s) (fl.oz) Type of admixture(s)

8th RILEM International Conference on Mechanisms of Cracking and Debonding in Pavements (MCD2016)

Pavement Tagging Technology

Fresh Concrete Properties Slump (inches) Unit Weight (lb/ft³) Concrete Temperature (°F) Entrained Air (%) Hardened Concrete Properties Compressive Strength (psi) Flexural Strength (psi) Elastic Modulus (psi) Measure CTE Construction Ambient Temperature at the time of concrete placement (°F) Relative Humidity at the time of concrete placement (%) Wind Speed (mph) Curing material

Pavement Tagging Technology

Pavement Design

Slab thickness (inches) Base thickness (inches) Base type Subbase thickness (inches) Subbase type Resilient Modulus of base (psi) Resilient modulus of subbase (psi) Modulus of subgrade reaction (psi/in) Type of subgrade Joint spacing Joint sealant type Dowel diameter Dowel spacing Dowel bar material

8th RILEM International Conference on Mechanisms of Cracking and Debonding in Pavements (MCD2016)

Pavement Tagging Technology

N	PiezonixPavement		20
Program Construction Data Unload	Devemant Droperties	Pie	zonix
Date tag was placed	Pavement Properces	1/7/2016	15
Location tag was placed			
Truck #			
Paver type, make and model	wheeled or tracked		
Material transfer vehicle user	17	🗌 Yes	
Asphalt Pavement Information			
Job Mix Formula Binder Cont	tent (%)		
Job Mix Formula Binder Perf	ormance Grade		
Job Mix Formula RAP conten	t (%)		
Job Mix Formula Nominal M	aximum Aggregate Size NMAS (mm)		
Job Mix Formula %Passing 1	/2inch sieve		
Job Mix Formula %Passing #	4 sieve		
Job Mix Formula %Passing #	200 sieve		
Job Mix Formula Number of	Gyrations		
Job Mix Formula Design Air	/oid Content (%)		
Job Mix Formula Design Voic	is in the Mineral Aggregate VMA (%)		
Job Mix Formula Design Void	ds Filled with Asphalt VFA (%)		
Job Mix Formula Virgin Aggr	egate Specific Gravity		
Job Mix Formula RAP Binder	Content (%)		1
Job Mix Formula RAP Aggree	gate Specific Gravity		1
Ignition Oven Correction Fac	tor (%)		
In-place density (lb/ft ^a)			
Environmental Conditions			
Weather conditions			
Ambient temperature data (*	Ð		
Temparature of mix where ta	g was placed (*F)		

Two Technologies

Long-term Tagging Technology

Events Detection and Condition Monitoring Technology

8th RILEM International Conference on Mechanisms of Cracking and Debonding in Pavements (MCD2016)

MSU PFG Technology

- Sensors embedded inside "smart structures" that can selfprognosticate damage and mechanical failure.
- Zero Maintenance Sensors: Operational life of sensors comparable to the useful life of the structure Powering is one of the key challenges.

Sensor Size and Powering

Self-powered Sensors

• Sensors that operate by scavenging energy from the ambient environment.

Passive Sensors

 Sensor is active only when the interrogation signal present – radio-frequency, optical or acoustic sensing. (NOT Zero-downtime – cannot sense rare events)

Trickle-charge Sensors

Energy stored by trickle-charging and active only when powering conditions met. (NOT Zerodowntime – cannot sense rare events)

Direct-powered Sensors

 Harvest energy for operation from the signal being sensed – e.g. piezoelectric signal used for powering and sensing mechanical strain.

29

Piezo-floating-gate technology

(US Patents: 7,757,565 and 8,056,420)

Eliminate power regulators, energy storage, data converters, RAMs and digital signal processors. Use the physics of the device and the structure to perform computation and storage (Use analog computation instead of digital).

• Piezoelectric ceramics and polymers can generate high-voltages for low strain-levels but at ultra-low-driving currents.

And Stational Contracts

Comparison with other technologies

Process	0.5-µm standard CMOS
Size	1900 <i>µ</i> m x 1500 <i>µ</i> m
Maximum Current consumption	110nA (7-channel level crossing monitoring)
	90nA (3-channel impact monitoring)

8th RILEM International Conference on Mechanisms of Cracking and Debonding in Pavements (MCD2016)

33

Commercial Readers

Interfacing PFG with Gen-2 RFID

- Mechanical usage data in the EPC is continuously updated on the non-volatile memory and is powered by strain-variations.
- COTS platform (MSP430 based) to implement the Gen-2 protocol stack (derived from WISP).

Tested Prototypes

8th RILEM International Conference on Mechanisms of Cracking and Debonding in Pavements (MCD2016)

Damage was introduced by making a notch at the middle of the steel plate. The damage states were defined by increasing the notch size (2a) as follows:

Intact Plate-Sensor 4

 så 14,00%

 12,00%

 10,00%

 6,00%

 4,00%

 2,00%

 0,00%

 Gate 1 Gate 2 Gate 3 Gate 4 Gate 5 Gate 6 Gate 7

 Gate number

D40-Sensor 4

