June 7 - 9, 2016 - Nantes, FRANCE

Roads of the Future : Towards Durable and Multi-functional Infrastructures

Introduction – First part

Dr. Nicolas Hautière – IFSTTAR R5G Project Manager

Lessons from history

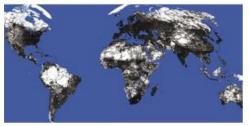
- 1st generation The track
- 2nd generation The paved road
- 3rd generation The smooth road
- 4th generation The motorway
- What's next?

THE CHALLENGES ARE | 1 HUGE... | 1

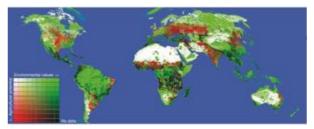
8th RILEM International Conference on Mechanisms of Cracking and Debonding in Pavements (MCD2016)

Global Grand Challenges

- Health
- Water
- Energy
- Education
- Environment
- Security
- Poverty
- Food



• The road embeds all these challenges !



Territories Sharing

> According to IEA (2013), 25 millions km of new roads are foreseen by 2050.

Roads are indicated in black; white areas lack mapped roads. The quality of road maps varies greatly among nations, with many smaller and unofficial roads remaining unmapped.

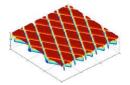
Shown are priority road-free areas (green shades), priority agricultural areas (red shades), conflict areas (dark shades), and lower-priority areas (light shades).

A global strategy for road building. Laurance et al. Nature (2014)

8th RILEM International Conference on Mechanisms of Cracking and Debonding in Pavements (MCD2016)

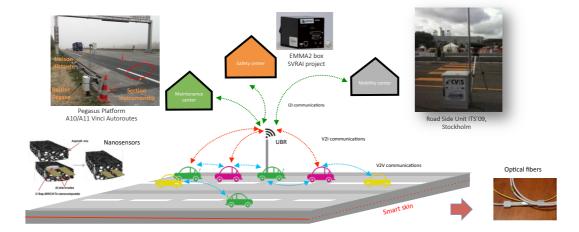
...BUT OPPORTUNITIES 2 ARISE

Innovative Materials


- Progress in materials science allows envisaging a new generation of pavements with novel properties
 - Modular
 - Prefabricated
 - Long-life
 - Self-cleaning
 - Silent
 - Recycled
 - Depolluting
 - Biosourced

ODSURF Modelling and building the Optimal Dense low noise Surface

ANR CLEAN RD117 St Philbert (CG 44) Long-lasting and depolluting concrete pavement 2x2 lanes at 110 km/h


IFSTTAR imagine the post-oil launching the **ALGOROUTE** project on bio-bitumen

7

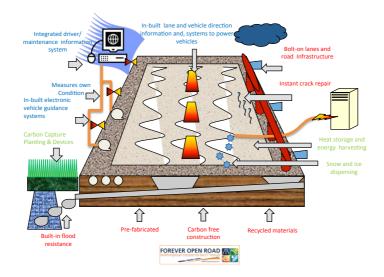
8th RILEM International Conference on Mechanisms of Cracking and Debonding in Pavements (MCD2016)

Information and Communication Technologies

Energy Management

• Energy harvesting

• Energy supply to vehicles


8th RILEM International Conference on Mechanisms of Cracking and Debonding in Pavements (MCD2016)

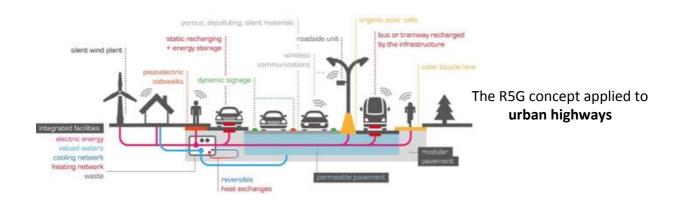
THE ROUTE 5^{ème} **3** GÉNÉRATION – R5G

The Forever Open Road

8th RILEM International Conference on Mechanisms of Cracking and Debonding in Pavements (MCD2016)

FOR - An international Alliance

- An alliance led by TRL (UK) and RWS (Netherlands)
- An alliance around national innovation programs
 - Die Strasse im 21. Jahrhundert led by BAST (Germany)
 - Ferry Free E39 led by Norway
 - Exploratory Advanced Research led by FHWA (USA)
 - Route 5^e Génération led by IFSTTAR (France)

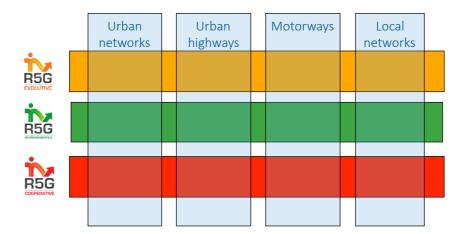


R5G Concept

• R5G aims at integrating the different components of the Forever Open Road following a system approach to build full scale demonstrators of the next generation road and allows developing a next generation of living labs

8th RILEM International Conference on Mechanisms of Cracking and Debonding in Pavements (MCD2016)

A Progressive Approach


A System Approach

8th RILEM International Conference on Mechanisms of Cracking and Debonding in Pavements (MCD2016)

And A 2017 when Plane And A 2017 when Plane Planet of Johnson of Planet

Different networks

Conclusion

- The road embeds all the global challenges, and in particular must contribute to the limitation of anthropization, when building new roads is necessary.
- Current progress in materials, ICT and energy sciences allows redesigning the future of roads
- Future roads have the potential to support a wide range of terrestrial transport modes and to be integrated from an energetic point of view.
- Neglecting the preservation of these assets could prevent the regeneration of actual roads into 5th generation roads. This would be a **choice with** regrets.
- Like other industrial sectors, innovation and upselling are key success factors and must be encouraged by public authorities.

8th RILEM International Conference on Mechanisms of Cracking and Debonding in Pavements (MCD2016)

And A 2014 Hours Made

PAVEMENT **4** INSTRUMENTATION **4** AND MONITORING

Introduction

Sensors and data acquisition systems

Examples of applications :

- Geophone measurements
- Strain measurements using optical fibers
- Detection of pavement damage using optical fibers

8th RILEM International Conference on Mechanisms of Cracking and Debonding in Pavements (MCD2016) 19/Nbr

Introduction

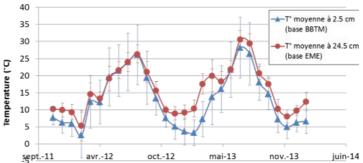
Recent progress in sensor and data acquisition technology

- New sensors : more accurate, smaller, cheaper...
- Increase of data storage and processing capacity
- Generalisation of internet technologies

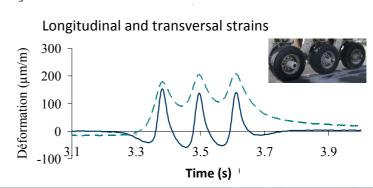
Increasing possibilities to develop efficient pavement monitoring systems, at a reasonable cost

Remaining challenges :

- Less intrusive (wireless) sensors
- Transducer durability
- Distributed measurements


20/Nbr

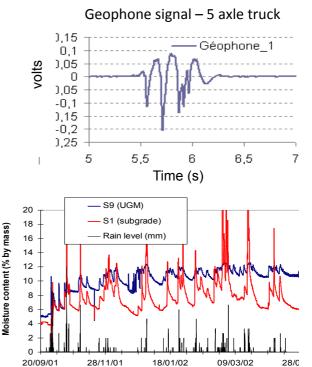
Examples of sensors


Continuous temperature measurements in asphalt pavement

Strain sensors TML, KM100 strain gages Length 100 mm, range ±5000 μdef

8th RILEM International Conference on Mechanisms of Cracking and Debonding in Pavements (MCD2016) 21/Nbr

Examples of sensors



Geophones Measurement of vertical velocity

Moisture probes TDR probes Measurement of volumetric water content – accuracy $\approx 1 \%$

8th RILEM International Conference on Mechanisms of Cracking and Debonding in Pavements (MCD2016)

Examples of sensors

Optical fibers

- Measurement of strains and temperatures
- Passive sensors Small size, low cost, durability

Fiber Bragg gratings

- Local strain measurements
- High measurement frequency (several kHz)

Continuous fibers (Raileigh)

- Continuous strain measurements over whole fiber length (up to 70 m) – spatial resolution : 1 cm – strain resolution : 1 μstrain
- slow measurements : 1 to 10 seconds per measurement

8th RILEM International Conference on Mechanisms of Cracking and Debonding in Pavements (MCD2016) 23/Nbr

Data acquisition system

PEGASE system : Modular, wireless data acquisition platform

- Analog Device Blackfin BF537 low power processor
- Wireless WIFI communication
- Small and low-power GPS receiver to ensure localization and absolute time synchronization
- uClinux embedded operating system
- Association with different sensor conditioners

Advantages of the PEGASE platform:

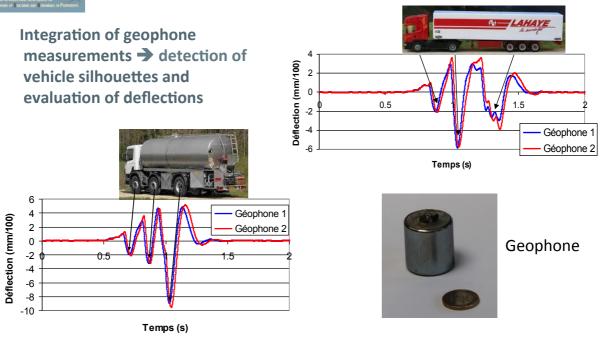
- On board processor
- Remote programming of the board
- Low power consumption

EXAMPLES OF 5 INSTRUMENTATION 5 RESULTS

25

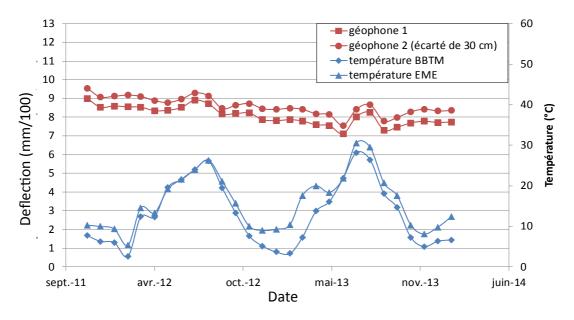
tot

8th RILEM International Conference on Mechanisms of Cracking and Debonding in Pavements (MCD2016)


Instrumented site on motorway A10 geophone measurements

Instrumented site

Geophone measurements



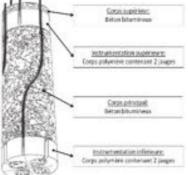
8th RILEM International Conference on Mechanisms of Cracking and Debonding in Pavements (MCD2016) 27/Nbr

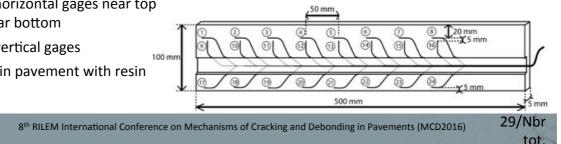
Geophone measurements

Monthly evolution of pavement deflections

Strain measurements using optical fibers

Evaluation of sensors developed at Université Laval for measurement of strain fields in upper pavement layers

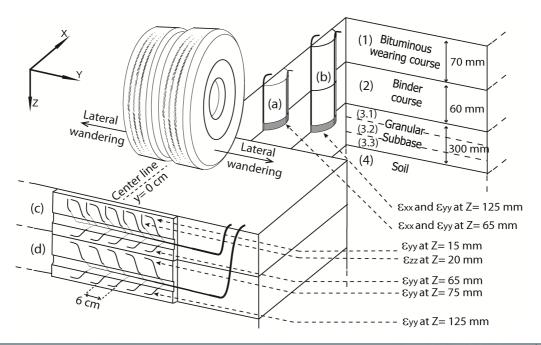

Instrumented core


Core taken from site, instrumented, and sealed in place with resin 2 gages (longitudinal and transversal) near top 2 gages near bottom

Instrumented plate

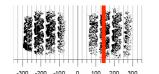
Thickness 5 mm

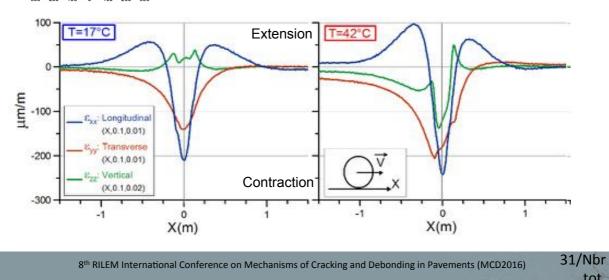
6 to 8 horizontal gages near top and near bottom 6 to 8 vertical gages Sealed in pavement with resin



Strain measurements using optical fibers

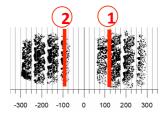
Installation of sensors on the accelerated pavement testing facility





Strain measurements using optical fibers

Strain measurements in 3 directions under dual wheel


Strains at small depth (10 to 20 mm) under tire sculpture Strong influence of temperature

And A Life sense field. And A Life sense field. A calculation and General Manual

Strain measurements using optical fibers

Modelling of transversal strains with the ViscoRoute software 50 ε_{γγ}(X,- 0.09,0.015) ·ε_w(X,0.12,0.015) T=17°C -Shape 1 T=17°C -Shape 2 0 m/mn -50 -100 -150 100 =42°C -Shape 1 -Shape 2 0 -100 m/mn -200 -300 Model -400 -500 0 -2 0 X(m) X(m)

Depth : 15 mm

Speed: 42 Km/h

Negative strains = extension

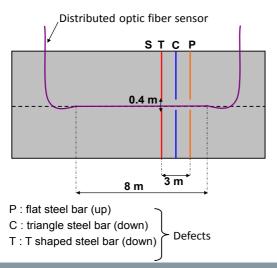
8th RILEM International Conference on Mechanisms of Cracking and Debonding in Pavements (MCD2016)

Evaluation of pavement damage using optical fibers

Experiment performed in the IFSTTAR APT facility

Use of continuous optical fibers for damage detection

- fibers installed in pavement base
- continuous measurement of strains after different numbers of 65 kN load applications
- objective : detection of high strain levels, indicating the presence of cracks

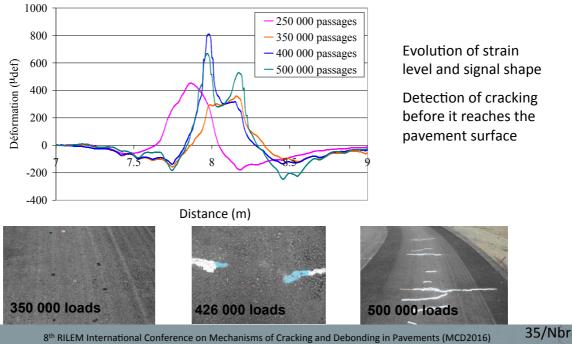

8th RILEM International Conference on Mechanisms of Cracking and Debonding in Pavements (MCD2016) 33/Nbr

Evaluation of pavement damage using optical fibers

Pavement Structure

- 8 cm high modulus asphalt mix
- 30 cm UGM (210 MPa)
- Subgrade (95 MPa)

Optical fiber installation


8th RILEM International Conference on Mechanisms of Cracking and Debonding in Pavements (MCD2016)

34/Nbr

Evaluation of pavement damage using optical fibers

Strain measurements along optical fiber under static load

tot

Thank you for your attention

8th RILEM International Conference on Mechanisms of Cracking and Debonding in Pavements (MCD2016)