e past, the presentation future a never ending story

André A.A. Molenaar

emeritus professor Delft University of Technology

the Netherlands

What will be discussed

- Can we predict what we observe in terms of cracking?
- Aren't we making too serious simplifications?
- Fatigue tests, size effects and EU norms
- Healing
- Bond between layers, a neglected aspect in pavement design
- Top down cracking
- Suggestions for the future

Question by my grandson

Opa, why are you making such a fuzz about cracking?

Good question!

HDM and AASHTO guide use riding quality (IRI, PSI) as design criterion and cracking doesn't seem to be an important parameter

8th RILEM International Conference on Mechanisms of Cracking and Debonding in Pavements (MCD2016)

4/Nbr

tot

NCHRP Report 39, HRB 1967

Careful consideration of the criterion and the basic measurements tends to indicate that a significant amount of the drop in riding quality must have been due to the longitudinal roughness *associated with fatigue cracking*

RR 123-10, UT Austin, 1971 S.P. Jain

- Arctan log(1 + $\sqrt{SV_i}$ $\sqrt{SV_o}$) = const + [log (1+C_i P_i)]²
- SV_o = initial roughness
- SV_i = roughness at time i
- C_i = amount of cracking at time i
- P_i = amount of patching at time i

So cracking IS an important issue

CRACKING AND DEBONDING IN PAVEN

Hypothesis:

Early Design Systems (e.g. SHELL design charts)

Total thickness of asphalt layers h₁

Total thickness of unbound base layers h₂

Shell Pavement Design Manual, 1977

Comments

- It is amazing to note that thickness design is still based on these two criteria
 - maximum tensile strain at bottom of asphalt layer
 - compressive strain at top of subgrade
- Surface cracking is not yet or not well taken into account
- Failure in interlayer between layers is not considered
- Interactions between damage types e.g. cracking and permanent deformation vv is not or not well taken into account

Questions

- Do pavements really crack bottom up?
- How good are our predictions? Do they match observations?

Appearance of Cracks

Miner's ratio vs wheel track cracking

MEPDG top down cracking

Top-down Cracking (ft/mile) = $\frac{10,560}{1 + e^{(7.0 - 3.5 \log FD)}}$

FD is cumulative fatigue damage given by Miner's law Cracking at pavement surface = f (damage at bottom of layer) Can this be correct?

Statement

In thicker pavements (h_{asphalt} > 150 mm) top down cracking is dominant and has very little to do with damage at bottom of layer

June 7-9, 2016 - Nantes, FRANCE 8" Rilem International Conference on Mechanisms of Cracking and Debonding in Pavements

We seem to do things wrong but we get acceptable results

CRACKING AND DEBONDING IN PAVEN

Fatigue life based on maximum tensile strain?

Fatigue and strain invariants

Fatigue relationship based on R_{Δ} for base course mixture

Pramesti, PhD thesis TUDelft 2014

8" Rilem International Conference on Mechanisms of Cracking and Debonding in Pavemen

Fatigue Tests, which one to choose?

compression

uni-axial tension/

4 p bending

2 p bending

indirect tension

CRACKING AND DEBONDING IN PAVEME

Problem observed at 4p bending tests

Cracking occurs often at clamps and not in middle part of specimen Test results might be affected by this

Trapezoidal 2p bending test doesn't show this problem

Li, PhD thesis TUDelft, 2013

European Norms

- Huge efforts have been made in Europe to harmonize norms for determining asphalt mix properties
- Did we succeed? We knew it was going to be difficult with so many countries, so many languages and so many test methods involved
- To my opinion we did NOT succeed because the different tests give different results which are also size dependent.
- One method is even wrong to my opinion

Fatigue Testing

Chapter 6 EN 12697-24:2004 (E)

- 6 Summary of the procedures
- 6.1 Two-point bending test on trapezoidal specimens
- 6.2 Two-point bending test on prismatic shaped specimens
 - 6.3 Three-point bending test on prismatic shaped specimens
 - 6.4 Four-point bending test on prismatic shaped specimens
 - 6.5 Indirect tensile test on cylindrical shaped specimens

What about uni-axial tension compression test?

EN 12697-24:2004 (E)

Annex B (normative)

Two-point bending test on prismatic shaped specimens

B.1 Principle

This annex describes a method to characterise the behaviour of bituminous mixtures under fatigue loading by 2-point bending using square-prismatic shaped specimens. The method can be used for bituminous mixtures with maximum aggregate size of 20 mm, on specimens prepared in a laboratory or obtained from road layers with a thickness of at least 40 mm.

In principle this test is wrong because one is testing the glue

Influence of test type

Comparison of load controlled 4 pb, UT/C and ITT fatigue tests

Conclusion

We better do a major effort in arriving to a *REAL* harmonization of tests because $\varepsilon_{6 \text{ ITT}} \neq \varepsilon_{6 2 \text{pb}} \neq \varepsilon_{6 4 \text{pb}} \neq \varepsilon_{6 \text{ uniaxial}} \neq \varepsilon_{6 3 \text{pb}}$

so if you classify fatigue resistance of a mixture using different tests you get different numbers

Size effect

Bodin, EATA 2006

OF CRACKING AND DEBONDING IN PAVEME

Effect specimen size on fatigue test result Li, PhD thesis TUDelft, 2013

UT/C test no size effect

4 pb tests show size effect Size 0.5 1 1.5 1.12 1 0.91 8₆

ITT test no size effect

Size effect

- Bodin has shown size effects of 2p bending trapezoidal fatigue tests
- Li has shown size effect 4p bending fatigue test
- It has been shown that ANY bending test will show size dependency

Fatigue law: N = $k_1 (\epsilon)^{-n}$ N = $\epsilon^{-n} h^{(1-n/2)} F_c / A Smix^n$ k_1 depends on type and size specimen!

une 7-9, 2016 – Nantes, FRANCE " Rilem International Conference on Aechanisms of Cracking and Debonding in Pavements

2p, 3p, 4p beam tests and testing mode do not simulate reality! What are the consequences?

June 7-9, 2016 – Nantes, FRANCE 8" Rilem International Conference on Mechanisms of Oracking and Debonding in Pavement

Shouldn't we go for beam on elastic foundation tests?

Beam on elastic foundation

Pramesti, PhD thesis TUDelft 2014 Load All in mm VD=vertical LVDT SD=side displacement 10 displacement 120 10 Crack length with 70 Asphalt white paint and camera **Teflon layer** 20 beam giving full slip 20 3.5 15 400 10 35 COD Rubber COD=crack opening displacement 100 Steel 600

4p Bending (strain controlled) and BOEF (load controlled) at 5 °C and 8 Hz

Pramesti, PhD thesis TUDelft 2014

June 7-9, 2016 – Nantes, FRANCE 871 Rilem International Conference on Mechanisms of Cracking and Debonding in Pavement

Α

Pramesti, PhD thesis TUDelft 2014

В

Progression of Cracking

JURE 7-9, 2016 - NARTES, FRANCE 8th Rilem International Conference on Mechanisms of Cracking and Debonding in Pavements

8" Rilem International Conference on Mechanisms of Cracking and Debonding in Pavement

Is this bottom-up or top-down cracking?

34/Nbr

Stresses under wheel load

Tyre 7- 425-65 R22.5

Direction: (Z) Inflation pressure: 950 (kPa) Applied Vertical Tyre Load: 75 (kN)

SIM Measured Tyre Load (Z): 98.7 (kN)

Estimated contact area: 573.0 (cm²) Equivalent uniform contact stress: 1722.2 (kPa) Radius of equivalent circular area: 135.0 (mm)

Lateral Stress (kPa) at 201 mm

1182

788

394

1970

1576

June 7-9, 2016 – Nantes, FRANCE 8" Rilem International Conference on Mechanisms of Cracking and Debonding in Pavements

Principal strains at pavement surface and bottom of asphalt layer

Cracking at pavement surface is likely to occur

- Strain at depth of 135 mm is about the same as strain at surface
- Strain at bottom of 150 mm thick asphalt layer

Pramesti, PhD thesis TUDelft 2014

Conclusion on top down cracking

- Complex contact pressure distributions with high peak stresses will result in high tensile strains at pavement surface
- Surface/top down cracking is likely to occur because of these high tensile strains
- Top down cracking will be dominant in thicker asphalt pavements
- Hardening of surface layer will aggravate problem
- Durable, high fatigue and permanent deformation resistant mixtures will solve much of the problem

Conclusion

- Top down cracking is serious problem
- De-bonding and lack of bond is another serious problem

Hernando, Magruder, Zou, Roque; this conference

Shear fatigue AC base and interface binder - base

Molenaar & Jansen, TUDelft Report, 1983

Conclusion

- Interface is the weakest part!
- We should take this into account in design analyses

Healing

- Large amount of work has been done on healing
- Fatigue tests with rest periods showed increase in fatigue life
- Strain level seemed to be of importance

Fracture, re-fracture tests

Tension tests on prismatic specimens 40*30*100 mm. Broken specimens stored vertically. Crack closure load ≈ 20 g/cm² <u>180/200 pen bitumen</u>

Bazin & Saunier 2nd Int Conf Struct Design of Asphalt pavements Ann Arbor, 1967

Conclusion

- Some compressive force (crack closure force is needed) in order to obtain healing
- Note that very soft bitumen 180/200 pen was used!
- Healing seems to be a flow driven process

Healing of mastics

- If the mastic doesn't heal then no chance that the mixture will heal
- If the mastic heals then there might be a chance that the mixture heals
- 70/100 pen bitumen (pen 93, Tr&b = 45 °C)
- SBS pmb (pen 65, Tr&b = 70 °C)
- Wigro limestone filler (bitumen number 42 -48, voids 37 41%, 77 87% < 0.063 mm))
- Binder : filler ratio = 1 : 1 by mass

Qiu, PhD thesis TUDelft, 2012

Fracture re-fracture test

- Prepare specimen by mixing at 150 °C
- Tension test at 0 °C and 100 mm/min

- Qiu, PhD thesis TUDelft, 2012
- Replace in mold, store at 10, 20, 40 °C for x hrs

Results fracture re-fracture test

Healing of mixtures? Retesting after 2.5 – 3 months storage at 15 °C.

Conclusions on healing

- High bitumen content
- High amount of voids filled with bitumen
- Soft binder
- Long rest period
- Temperature > 25 °C
- Crack closure force
- Healing in terms of stiffness ≠ healing in terms of strength

Pavements age and crack because of being there

Rate of change of R is indicator of bitumen quality

Rowe, ISAP symp Guangzou, 2013

Future needs

- Development of advanced models will and must continue
- These models should be used to understand what "simple" tests are telling us
- Gap between pavement design/performance analyses and "simple" quality control tests can and should be bridged by advanced models in this way

Correlate simple test with performance predictions

Advanced modelling allows to correlate "simple" QC test to pavement performance

Liu, Scarpas, Medani, Sutjiadi, TUDelft Report, 2008

Pavement Design

Use of advanced models and "complex" material tests is still far away from day to day practice

Correlating "complexity" to "simplicity" is therefore important

Future needs

- Advanced models can and should be used to arrive to real harmonization of tests
- Advanced models can and should be used to explain differences between results obtained by means of different tests. Correlations can be developed
- Current "jungle" of fatigue tests allowed in EU norms can be "cleared" in this way

THANK YOU FOR YOUR ATTENTION